Abstract
To understand changes in the heart with congenital defects, it is necessary first of all to study the patterns of its embryonic development. The article highlights the main stages in the formation of the doctrine of cardiac embryology, emphasizing the importance of studying the history of the development of ideas about the formation and regeneration of organs and tissues in phylo- and ontogenesis, including resolving the issue of the place and role of genetic and epigenetic factors in normal conditions and in congenital defects development. The modern doctrine of embryogenesis of the heart became possible only with the development of the cellular theory of the structure of living organisms, according to wich the integrity and individualization of cells is not inferior to the integrity of a multicellular organism, and in some respects even exceeds it.
References
- Davydovsky I.V. Problems of causation in medicine (etiology). Moscow; 1962 (in Russ.).
- Waddington С. H. Does evolution depend on random search. In: On the way to theoretical biology. 1. Prolegomena. Moscow; 1970: 108–115 (in Russ.).
- Turovsky M.B. How to understand dialectical logic as the basis of the theory of medicine. In: Theoretical problems of modern medicine. Moscow; 1967: 156–186 (in Russ.).
- Falkovsky G.E. The structure of the heart and the anatomical basis of its function. Lecture course materials. Moscow; 2014 (in Russ.).
- Aristotle. About the origin of animals. Moscow; Leningrad; 1940 (in Russ.).
- Waddington C.H. Morphogenesis and genetics. Moscow; 1964 (in Russ.).
- Waddington C.H. Basic biological concepts. In: On the way to theoretical biology. 1. Prolegomena. Moscow; 1970: 11–38 (in Russ.).
- Harvey V. Anatomical study of the movement of the heart and blood in animals. Moscow; 1948 (in Russ.).
- Olson E.N. Gene regulatory networks in the evolution and development of the heart. Science. 2006; 313 (5795): 1922–1927. DOI: 10.1126/ science.1132292
- Granados-Riveron J.T., Ghosh T.K., Pope M., Bu'Lock F., Thornborough C., Eason J. et al. Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects. Hum. Mol. Genet. 2010; 19 (20): 4007–4016. DOI: 10.1093/hmg/ddq315
- Granados-Riveron J.T., Brook J.D. The impact of mechanical forces in heart morphogenesis. Circ. Cardiovasc. Genet. 2012; 5 (1): 132–142. DOI: 10.1161/CIRCGENETICS.111.961086
- Knorre A.G. Embryonic histogenesis (morphological essays). Leningrad; 1971 (in Russ.).
- Bockeria L.A., Glyantsev S.P., Serov R.A., Yeremeeva M.V., Luzhina M. Yu., Basarab Yu.S. From cell discovery to its treatment (to 165-th anniversary of cell doctrine). Part 1. From microscope invention to cytology. Clinical Physiology of Circulation. 2005; 1: 14–23 (in Russ.).
- Bockeria L.A., Glyantsev S.P., Serov R.A., Yeremeeva M.V., Luzhina M.Yu., Basarab Yu.S. From cell discovery to its treatment (to 165-th anniversary of cell doctrine). Part 2. From cytomorphology to molecular biology. Clinical Physiology of Circulation. 2005; 2: 19–29 (in Russ.).
- Bockeria L.A., Glyantsev S.P., Serov R.A., Yeremeeva M.V., Luzhina M.Yu., Basarab Yu.S. From cell discovery to its treatment (to 165-th anniversary of cell doctrine). Part 3. From treatment by cells to cell`s treatment. Clinical Physiology of Circulation. 2005; 3: 5–12 (in Russ.).
- Patten B.M. Human embryology. Moscow; 1959 (in Russ.).
- Arshavsky I.A. Physiological mechanisms and patterns of individual development. Moscow; 1982 (in Russ.).
- Shvalev V.N., Sosunov A.A., Guski G. Morphological basis of heart innervation. Moscow; 1992 (in Russ.).
- Moorman A.F., Christoffels V.M. Cardiac chamber formation: development, genes, and evolution. Physiol. Rev. 2003; 83 (4): 1223–1267. DOI: 10.1152/physrev.00006.2003
- Rumyantsev P.P. Cardiomyocytes in the processes of reproduction, differentiation and regeneration. Leningrad; 1982 (in Russ.).
- Monckeberg J.G., Herz A. 1. Die Missbildungen des Herzens. In: Von Henke F., Lubarsch O. Handbuch der speziellen pathologischen anatomie und histologie. Berlin: Verlag von J. Springer; 1926: 1–183.
- Anderson R.H., Webb S., Brown N.A., Lamers W., Moorman A. Development of the heart: (2) septation of the atriums and ventricles. Heart. 2003; 89 (8): 949–958. DOI: 10.1136/heart.89.8.949
- Anderson R.H., Webb S., Brown N.A., Lamers W., Moor-man A. Development of the heart: (3) formation of the ventricular outflow tracts, arterial valves, and intrapericar-dial arterial trunks. Heart. 2003; 89 (9): 1110–1108. DOI: 10.1136/heart.89.9.1110
- Webb S., Qayyum S.R., Anderson R.H., Lamers W.H., Richardson M.K. Septation and separation within the outflow tract of the developing heart. J. Anat. 2003; 202 (4): 327–342. DOI: 10.1046/j.1469-7580.2003.00168.x
- Bogers A.J., Gittenberger-de Groot A.C., Poelmann R.E., Péault B.M., Huysmans H.A. Development of the origin of the coronary arteries, a matter of ingrowth or outgrowth? Anat. Embryol. (Berl.). 1989; 180 (5): 437–441. DOI: 10.1007/BF00305118
- Bockeria L.A., Berishvili I.I. Surgical anatomy of the coronary arteries. Moscow; 2003 (in Russ.).
- Pavlov G.G. Organ specificity of the development of connective tissue structures and the bloodstream of the heart in ontogenesis. Grudnaya i Serdechno-Sosudistaya Khirurgiya. 1994; 4: 51–56 (in Russ.).
- Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 1999; 21 (1): 70–71. DOI: 10.1038/5007
- Epstein J.A., Li J., Lang D., Chen F., Brown C.B., Jin F. et al. Migration of cardiac neural crest cells in Splotch embryos. Development. 2000; 127 (9): 1869–1878. DOI: 10.1242/dev.127.9.1869
- Kwang S.J., Brugger S.M., Lazik A., Merrill A.E., Wu L.Y., Liu Y.H. et al. Msx2 is an immediate downstream effector of Pax3 in the development of the murine cardiac neural crest. Development. 2002; 129 (2): 527–538. DOI: 10.1242/dev.129.2.527
- Poelmann R.E., Lie-Venema H., Gittenberger-de Groot A.C. The role of the epicardium and neural crest as extracardiac contributors to coronary vascular development. Tex. Heart Inst. J. 2002; 29 (4): 255–261. PMID: 12484609; PMCID: PMC140287.
- Verzi M.P., McCulley D.J., De Val S., Dodou E., Black B.L. The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev. Biol. 2005; 287 (1): 134–145. DOI: 10.1016/j.ydbio.2005.08.041
- Park E.J., Ogden L.A., Talbot A., Evans S., Cai C.L., Black B.L. et al. Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling. Development. 2006; 133 (12): 2419–2433. DOI: 10.1242/dev.02367
- Snarr B.S., Kern C.B., Wessels A. Origin and fate of cardiac mesenchyme. Dev. Dyn. 2008; 237 (10): 2804–2819. DOI: 10.1002/dvdy.21725
- Chi N.C., Bussen M., Brand-Arzamendi K., Ding C., Olgin J.E., Shaw R.M. et al. Cardiac conduction is required to preserve cardiac chamber morphology. Proc. Natl. Acad. Sci. USA. 2010; 107 (33): 14662–14667. DOI: 10.1073/pnas.0909432107
- Srivastava D. Genetic regulation of cardiogenesis and congenital heart disease. Annu. Rev. Pathol. 2006; 1: 199–213. DOI: 10.1146/annurev. pathol.1.110304.100039
- Abu-Issa R., Kirby M.L. Heart field: from mesoderm to heart tube. Annu. Rev. Cell. Dev. Biol. 2007; 23: 45–68. DOI: 10.1146/annurev. cellbio.23.090506.123331
- Cotran R.A. Pathologic basis of disease. 8th edn. Saunders, Elsevier; 2010: 1450.
- Burridge P.W., Sharma A., Wu J.C. Genetic and epigenetic regulation of human cardiac reprogramming and differen-tiation in regenerative medicine. Annu. Rev. Genet. 2015; 49: 461–484. DOI: 10.1146/annurev-genet-112414-054911
- Sugi Y., Lough J. Activin-A and FGF-2 mimic the inductive effects of anterior endoderm on terminal cardiac myogenesis in vitro. Dev. Biol. 1995; 168 (2): 567–574. DOI: 10.1006/dbio.1995.1102
- Lough J., Sugi Y. Endoderm and heart development. Dev. Dyn. 2000; 217 (4): 327–342.
- Goddeeris M.M., Schwartz R., Klingensmith J., Meyers E.N. Independent requirements for Hedgehog signaling by both the anterior heart field and neural crest cells for outflow tract development. Development. 2007; 134 (8): 1593–1604. DOI: 10.1242/dev.02824
- Rochais F., Mesbah K., Kelly R.G. Signaling pathways controlling second heart field development. Circ. Res. 2009; 104 (8): 933–942. DOI: 10.1161/CIRCRESAHA.109.194464
- Kelly R.G., Brown N.A., Buckingham M.E. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev. Cell. 2001; 1 (3): 435–440. DOI: 10.1016/s1534-5807(01)00040-5
- Pérez-Pomares J.M., Carmona R., González-Iriarte M., Atencia G., Wessels A., Muñoz-Chápuli R. Origin of coro-nary endothelial cells from epicardial mesothelium in avian embryos. Int. J. Dev. Biol. 2002; 46 (8): 1005–1013. PMID: 12533024.
- Lie-Venema H., van den Akker N.M., Bax N.A., Winter E.M., Maas S., Kekarainen T. et al. Origin, fate, and function of epicardium-derived cells (EPDCs) in normal and abnormal cardiac development. Sci. World J. 2007; 7: 1777–1798. DOI: 10.1100/tsw.2007.294
- Muñoz-Chápuli R., Macías D., González-Iriarte M., Carmo-na R., Atencia G., Pérez-Pomares J.M. El epicario y las células derivadas del epicardio: múltiples funciones en el desarrollo cardíaco [The epicardium and epicardial-derived cells: multiple functions in cardiac development]. Rev. Esp. Cardiol. 2002; 55 (10): 1070–1082 (in Spanish). DOI: 10.1016/s0300-8932(02)76758-4
- Pritchett E.L., Prystowsky E.N., Benditt D.G., Gallagher J.J. “Dual atrioventricular nodal pathways” in patients with Wolff–Parkinson–White syndrome. Br. Heart J. 1980; 43 (1): 7–13. DOI: 10.1136/hrt.43.1.7
- Ratajska A., Czarnowska E., Ciszek B. Embryonic deve-lopment of the proepicardium and coronary vessels. Int. J. Dev. Biol. 2008; 52 (2–3): 229–236. DOI: 10.1387/ijdb. 072340ar
- Sahara M., Santoro F., Chien K.R. Programming and reprogramming a human heart cell. EMBO J. 2015; 34 (6): 710–738. DOI: 10.15252/ embj.201490563
- Vrancken Peeters M.P., Gittenberger-de Groot A.C., Mentink M.M., Poelmann R.E. Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium. Anat. Embryol. (Berl.). 1999; 199 (4): 367–378. DOI: 10.1007/ s004290050235
- Poelmann R.E., Mikawa T., Gittenberger-de Groot A.C. Neural crest cells in outflow tract septation of the embryonic chicken heart: differentiation and apoptosis. Dev. Dyn. 1998; 212 (3): 373–384. DOI: 10.1002/(SICI)1097-0177(199807) 212:3<373::AID-AJA5>3.0.CO;2-E
- Ibert J. Interacting systems in development. Moscow; 1968 (in Russ.).
- Petrenko V.M. Embryology, comparative anatomy and biology of organ development. International Journal of Applied and Basic Research. 2016; 11: 909–913 (in Russ.).
- Winter E.M., Gittenberger-de Groot A.C. Epicardium-derived cells in cardiogenesis and cardiac regeneration. Cell. Mol. Life Sci. 2007; 64 (6): 692–703. DOI: 10.1007/s00018-007-6522-3
- Tian X., Hu T., Zhang H., He L., Huang X., Liu Q. et al. Subepicardial endothelial cells invade the embryonic ventricle wall to form coronary arteries. Cell. Res. 2013; 23 (9): 1075–1090. DOI: 10.1038/cr.2013.83
- Golukhova E.Z. Report on the scientific and clinical activity of Bakoulev National Medical Research Center for Cardiovascular Surgery for 2022 years and development prospects of Hie Center. Bulletin of Bakoulev Center. Car-diovascular Diseases. 2023; 24 (Special Issue): S5–S133 (in Russ.). DOI: 10.24022/1810-0694-2023-24-S5–S133
- Golukhova E.Z. Report on the scientific and clinical activity of Bakoulev National Medical Research Center for Cardio-vascular Surgery for 2023 years and development prospects. Bulletin of Bakoulev Center. Cardiovascular Diseases. 2024; 25 (Special Issue): S5–S152 (in Russ.). DOI: 10.24022/ 1810-0694-2024-25-S5–S152
About the authors
Roman A. Serov, Dr. Med. Sci., Professor, Head of Department;
ORCID