Abstract
Objective. To compare the clinical course and outcomes of sarcomeric and RAS-associated hypertrophic cardiomyopathy (HCM) in children with onset at 1 year of age.
Material and methods. Based on the results of a genetic study, 36 patients with mutations in the genes of sarcomeric proteins and the RAS-MAPK signaling pathway were selected. In these groups, a comparative analysis of clinical status, laboratory and instrumental data, as well as outcomes was carried out. The difference between the groups was assessed using biomedical statistics methods.
Results. Seventeen patients (47%) had mutations in the genes of sarcomeric proteins, and 19 (53%) had mutations in the RAS-MAPK signaling pathway. Among sarcomeric mutations, the most common were mutations in the MYH7 gene (58.8%, n = 10), and in the group of RAS-associated HCM – PTPN11 (42.11%, n = 8) and RAF1 (42.11%, n = 8). Children with RASopathies had a high incidence of congenital malformations of organs and systems, as well as congenital heart disease (p < 0.05). Biventricular HCM was detected in 14 (38.9%) children, obstructive form – in 17 (47.2%) patients. Overall survival rate (mean follow-up duration 10 [6.0; 20.0] years) is 83.3% (n = 30). There were 6 deaths (3 in each group). Overall survival rate at 5 years of age among all children was 91.7% [95% CI 96.4–87.1%], at 10 years of age 88.6% [95% CI 93.9–83.2%]. Implantable cardioverter-defibrillator was installed in 4 children with sarcomeric HCM only (23.5%). Myectomy was performed in 9 (25%) children.
Conclusion. The natural history of HCM in children with onset before one year is characterized by high mortality. Children with RASopathies represent a special risk group at an early age.
References
- Lipshultz S.E., Sleeper L.A., Towbin J.A., Lowe A.M., Orav E.J., Cox G.F. et al. The incidence of pediatric cardiomyopathy in two regions of the United States. N. Engl. J. Med. 2003; 348 (17): 1647–1655. DOI: 10.1056/NEJMoa021715
- Karim S., Chahal C.A.A., Sherif A.A., Khanji M.Y., Scott C.G., Chamberlain A.M. et al. Re-evaluating the incidence and prevalence of clinical hypertrophic cardiomyopathy: An Epidemiological Study of Olmsted County, Minnesota. Mayo Clin Proc. 2024; 99 (3): 362–374. DOI: 10.1016/j.mayocp.2023.09.009
- Marston N.A., Han L., Olivotto I., Day S.M., Ashley E.A., Michels M. et al. Clinical characteristics and outcomes in childhood-onset hypertrophic cardiomyopathy. Eur. Heart J. 2021; 42 (20): 1988–1996. DOI: 10.1093/eurheartj/ehab148
- Norrish G., Kolt G., Cervi E., Field E., Dady K., Ziółkowska L. et al. Clinical presentation and long-term outcomes of infantile hypertrophic cardiomyopathy: a European multicentre study. ESC Heart Fail. 2021; 8 (6): 5057–5067. DOI: 10.1002/ehf2.13573
- Chan W., Yang S., Wang J., Tong S., Lin M., Lu P. et al. Clinical characteristics and survival of children with hypertrophic cardiomyopathy in China: a multicentre retrospective cohort study. EClinicalMedicine. 2022; 49: 101466. DOI: 10.1016/j.eclinm.2022.101466
- Limongelli G., Monda E., Tramonte S., Gragnano F., Masarone D., Frisso G. et al. Prevalence and clinical significance of red flags in patients with hypertrophic cardiomyopathy. Int. J. Cardiol. 2020; 299: 186–191. DOI: 10.1016/j.ijcard.2019.06.073
- Stegeman R., Paauw N.D., de Graaf R., van Loon R.L.E., Termote J.U.M., Breur J.M.P.J. The etiology of cardiac hypertrophy in infants. Sci Rep. 2021; 11 (1): 10626. DOI: 10.1038/s41598-021-90128-3
- Boleti O., Norrish G., Field E., Dady K., Summers K., Nepali G. et al. Natural history and outcomes in paediat- ric RASopathy-associated hypertrophic cardiomyopathy. ESC Heart Fail. 2024; 11 (2): 923–936. DOI: 10.1002/ehf2.14637
- Chen H., Li X., Liu X., Wang J., Zhang Z., Wu J. et al. Clinical and mutation profile of pediatric patients with RASopathy-associated hypertrophic cardiomyopathy: results from a Chinese cohort. Orphanet J. Rare Dis. 2019; 14 (1): 29. DOI: 10.1186/s13023-019-1010-z
- Kauffman H., Ahrens-Nicklas R.C., Calderon-Anyosa R.J.C., Ritter A.L., Lin K.Y., Rossano J.W. et al. Genotype-phenotype association by echocardiography offers incremental value in patients with Noonan Syndrome with multiple lentigines. Pediatr. Res. 2021; 90 (2): 444–451. DOI: 10.1038/s41390-020-01292-7
- Lioncino M., Monda E., Verrillo F., Moscarella E., Calcagni G., Drago F. et al. Hypertrophic cardiomyopathy in RASopathies: diagnosis, clinical characteristics, prognostic implications, and management. Heart Fail. Clin. 2022; 18 (1): 19–29. DOI: 10.1016/j.hfc.2021.07.004
- Kaski J.P., Syrris P., Esteban M.T., Jenkins S., Pantazis A., Deanfield J.E. et al. Prevalence of sarcomere protein gene mutations in preadolescent children with hypertrophic cardiomyopathy. Circ. Cardiovasc. Genet. 2009; 2 (5): 436–441. DOI: 10.1161/CIRCGENETICS.108.821314
- Field E., Lopes L.R., Dady K., Kaski J.P. Early Childhood-onset hypertrophic cardiomyopathy in a family with an in-frame MYH7 deletion. Circ. Genom. Precis. Med. 2022; 15 (4): e003667. DOI: 10.1161/CIRCGEN.121.003667
- Kadirrajah V., Acquaah V., Norrish G., Field E., Dady K., Cervi E. et al. Clinical characterisation of hypertrophic cardiomyopathy caused by MYH7 gene variants in children. Eur. Heart J. 2021; 42 (1). DOI: 10.1093/eurheartj/ehab724.1774
- Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015; 17 (5): 405–424. DOI: 10.1038/gim.2015.30
- Monda E., Prosnitz A., Aiello R., Lioncino M., Norrish G., Caiazza M. et al. Natural history of hypertrophic cardiomyopathy in Noonan Syndrome with multiple lentigines. Circ. Genom. Precis. Med. 2023; 16 (4): 350–358. DOI: 10.1161/CIRCGEN.122.003861
- Calcagni G., Adorisio R., Martinelli S., Grutter G., Baban A., Versacci P. et al. Clinical presentation and natural history of hypertrophic cardiomyopathy in RASopathies. Heart Fail. Clin. 2018; 14 (2): 225–235. DOI: 10.1016/j.hfc.2017.12.005
- Faienza M.F., Meliota G., Mentino D., Ficarella R., Gentile M., Vairo U. et al. Cardiac phenotype and gene mutations in RASopathies. Genes (Basel). 2024; 15 (8): 1015. DOI: 10.3390/genes15081015
- Calcagni G., Limongelli G., D'Ambrosio A., Gesualdo F., Digilio M.C., Baban A. et al. Cardiac defects, morbidity and mortality in patients affected by RASopathies. CARNET study results. Int. J. Cardiol. 2017; 245: 92–98. DOI: 10.1016/j.ijcard.2017.07.068
- Zenker M. Clinical overview on RASopathies. Am. J. Med. Genet. C. Semin. Med. Genet. 2022; 190 (4): 414–424. DOI: 10.1002/ajmg.c.32015
- Gazzin A., Fornari F., Niceta M., Leoni C., Dentici M.L., Carli D. et al. Defining the variant-phenotype correlation in patients affected by Noonan syndrome with the RAF1:c.770C>T p.(Ser257Leu) variant. Eur. J. Hum. Genet. 2024; 32 (8): 964–971. DOI: 10.1038/s41431-024- 01643-6
- Cerrato F., Pacileo G., Limongelli G., Gagliardi M.G., Santoro G., Digilio M.C. et al. A standard echocardiographic and tissue Doppler study of morphological and functional findings in children with hypertrophic cardiomyopathy compared to those with left ventricular hypertrophy in the setting of Noonan and LEOPARD syndromes. Cardiol. Young. 2008; 18 (6): 575–580. DOI: 10.1017/S104795110800320X
- Naneishvili T., Yuan M., Mansour M., Moody W.E., Steeds R.P. Dysplastic mitral valve in Costello Syndrome. JACC Case Rep. 2024; 29 (14): 102408. DOI: 10.1016/j.jaccas.2024.102408
- Marino B., Gagliardi M.G., Digilio M.C., Polletta B., Grazioli S., Agostino D. et al. Noonan syndrome: structural abnormalities of the mitral valve causing subaortic obstruction. Eur. J. Pediatr. 1995; 154 (12): 949–952. DOI: 10.1007/BF01958636
- Zhang N., Chen L., Zhang J. Septal myectomy for severe neonatal hypertrophic cardiomyopathy caused by PTPN11 gene mutation: a case report. Biomed. J. Sci. Tech. Res. 2019; 4: 1–3. DOI: 10.26717/BJSTR.2019.21.003544
- Faienza M.F., Giordani L., Ferraris M., Bona G., Cavallo L. PTPN11 gene mutation and severe neonatal hypertrophic cardiomyopathy: what is the link? Pediatr. Cardiol. 2009; 30 (7): 1012–1015. DOI: 10.1007/s00246-009-9473-7
- Liu S., Zhao Y., Mo H., Hua X., Chen X., Wang W. et al. Genetic variations in PTPN11 lead to a recurrent left ventricular outflow tract obstruction phenotype in childhood hypertrophic cardiomyopathy. J. Thorac. Cardiovasc. Surg. 2024; 169 (1): 197–207. DOI: 10.1016/j. jtcvs.2024.06.012
- Nguyen S.N., Chung M.M., Vinogradsky A.V., Richmond M.E., Zuckerman W.A., Goldstone A.B. et al. Long-term outcomes of surgery for obstructive hypertrophic cardiomyopathy in a pediatric cohort. JTCVS Open. 2023; 16: 726–738. DOI: 10.1016/j.xjon.2023.09.032
- Kaltenecker E., Schleihauf J., Meierhofer C., Shehu N., Mkrtchyan N., Hager A. et al. Long-term outcomes of childhood onset Noonan compared to sarcomere hypertrophic cardiomyopathy. Cardiovasc. Diagn. Ther. 2019; 9 (Suppl. 2): S299–S309. DOI: 10.21037/cdt.2019.05.01
About the authors
- Svetlana G. Fetisova, Junior Researcher, Pediatric Cardiologist; ORCID
- Olesya V. Melnik, Cand. Med. Sci., Senior Researcher; ORCID
- Kseniya A. Sitnikova, Resident Physician; ORCID
- Yuliya V. Fomicheva, Laboratory Geneticist; ORCID
- Polina S. Sokolnikova, Laboratory Geneticist; ORCID
- Tatyana L. Vershinina, Head of Pediatric Cardiology and Medical Rehabilitation Department; ORCID
- Olga V. Fedorova, Head of Grant Competition Support Group; ORCID
- Tatyana M. Pervunina, Dr. Med. Sci., Director of Institute of Perinatology and Pediatrics, Chief of Chair of Perinatology and Pediatrics, Institute of Medical Education; ORCID
- Anna A. Kostareva, Dr. Med. Sci., Director of Institute of Molecular Biology and Genetics, Associate Professor of Chair of Internal Medicine, Institute of Medical Education; ORCID
- Elena S. Vasichkina, Dr. Med. Sci., Chief Researcher, Head of Research Center for Unknown, Rare and Genetically Determined Diseases, Professor of Chair of Perinatology and Pediatrics, Institute of Medical Education; ORCID