Abstract
Objective. To determine the prevalence of increased trabecularity and non-compact cardiomyopathy in a cohort of patients with catecholaminergic polymorphic ventricular tachycardia (CPVT).
Material and methods. The study included 68 patients with CPVT, observed at the Veltishchev Institute. To identify the presence of structural changes, all patients underwent expert-class echocardiography, magnetic resonance imaging of the heart, as indicated.
Results. In children with CPVT, the incidence of increased left ventricular myocardial trabeculation / non-compact cardiomyopathy was 24% of cases.
Conclusion. In patients with CPVT, the associated structural change in the myocardium is increased trabecularity of the left ventricular myocardium and non-compact cardiomyopathy.
References
- Zeppenfeld К., Tfelt-Hansen J., de Riva M., Winkel B.G., Behr E.R., Blom N.A. et al. Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J. 2022; 43 (40): 3997–4126. DOI: 10.1161/CIR.0000000000000548
- Roston T.M., Guo W., Krahn A.D., Wang R., Van Petegem F., Sanatani S. et al. A novel RYR2 loss-of-function mutation (I4855M) is associated with left ventricular non-compaction and atypical catecholaminergic polymorphic ventricular tachycardia. Electrocardiol. 2017; 50 (2): 227–233. DOI: 10.1016/j.jelectrocard.2016.09.006
- Nozaki Y., Kato Y., Uike K., Yamamura K., Kikuchi M., Yasuda M. et al. Co-phenotype of left ventricular non-compaction cardiomyopathy and atypical catecholaminergic polymorphic ventricular tachycardia in association with R169Q, a ryanodine receptor type 2 missense mutation. Circ. J. 2020; 84 (2): 226–234. DOI: 10.1253/circj.CJ-19-0720
- Chin T.K., Perloff J.K., Williams R.G., Jue K., Mohrmann R. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation. 1990; 82 (2): 507–513. DOI: 10.1161/01.cir.82.2.507
- Jenni R., Oechslin E., Schneider J., Attenhofer Jost C., Kaufmann P.A. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart. 2001; 86: 666–671. DOI: 10.1136/heart.86.6.666
- Campbell M.J., Czosek R.J., Hinton R.B., Miller E.M. Exon 3 deletion of ryanodine receptor causes left ventricular noncompaction, worsening catecholaminergic polymorphic ventricular tachycardia, and sudden cardiac arrest. Am. J. Med. Genet. A. 2015; 167 A (9): 2197–2200. DOI: 10.1002/ajmg.a.37140
- Szentpali Z., Szili-Torok T., Caliskan K. Primary electrical disorder or primary cardiomyopathy? A case with a unique association of noncompaction cardiomyopathy and cathecolaminergic polymorphic ventricular tachycardia caused by ryanodine receptor mutation. Circulation. 2013; 127 (10): 1165–1166. DOI: 10.1161/CIRCULATIONAHA.112.144949
- Petersen S.E., Selvanayagam J.B., Wiesmann F., Robson M.D., Francis J.M., Anderson R.H. et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J. Am. Coll. Cardiol. 2005; 46 (1): 101–105. DOI: 10.1016/j.jacc.2005.03.045
- Corrado D., Perazzolo Marra M., Zorzi A., Beffagna G., Cipriani A., Lazzari M.D. et al. Diagnosis of arrhythmogenic cardiomyopathy: the Padua criteria. Int. J. Cardiol. 2020; 319: 106–114. DOI: 10.1016/j.ijcard.2020.06.005
- Rohde S., Muslem R., Kaya E., Dalinghaus M., van Waning J.I., Majoor-Krakauer D. et al. State-of-the art review: noncompaction cardiomyopathy in pediatric patients. Heart Fail. Rev. 2022; 27 (1): 15–28. DOI: 10.1007/s10741-021-10089-7
- Roston T.M., Yuchi Z., Kannankeril P.J., Hathaway J., Vinocur J.M., Etheridge S.P. et al. The clinical and genetic spectrum of catecholaminergic polymorphic ventricular tachycardia: findings from an international multicentre registry. Europace. 2018; 20 (3): 541–547. DOI: 10.1093/europace/euw389
- Kushnir A., Wajsberg B., Marks A.R. Ryanodine receptor dysfunction in human disorders. Biochim. Biophys Acta Mol. Cell. Res. 2018; 1865: 1687–1697. DOI: 10.1016/j.bbamcr.2018.07.011
- Woll K.A., Van Petegem F. Calcium-release channels: structure and function of IP3 receptors and ryanodine receptors. Physiol. Rev. 2022; 102: 209–268. DOI: 10.1152/physrev.00033.2020
- Fowler E.D., Zissimopoulos S. Molecular, subcellular, and arrhythmogenic mechanisms in genetic RyR2 disease. Biomolecules. 2022; 12 (8): 1030. DOI: 10.3390/biom12081030
- Ohno S., Omura M., Kawamura M., Kimura H., Itoh H., Makiyama T. et al. Exon 3 deletion of RYR2 encoding cardiac ryanodine receptor is associated with left ventricular non-compaction. Europace. 2014; 16 (11): 1646–1654. DOI: 10.1093/europace/eut382
About the authors
- Ekaterina K. Kulbachinskaya, Pediatric Cardiologist, Assistant Professor; ORCID
- Vera V. Bereznitskaya, Cand. Med. Sci., Head of the Children's Cardiology Department of Heart Rhythm Disorders; ORCID
- Natalya V. Terekhova, Postgraduate; ORCID
- Igor A. Kovalev, Dr. Med. Sci., Professor, Advisor to the Director; ORCID