Abstract
The modern development of pediatric cardiac surgery is inextricably linked with the ability to visualize a cardiovascular pathology and its connection to surrounding structures in detail. Determination of the hemodynamic aspects of congenital heart defects allows to correct a pathology timely and most effectively. Clinical challenges contributed to the development of new visualization approaches and tools, and acquired knowledge brought forth the development of modern algorithms for diagnosis and surgical treatment of malformations. Currently, catheter angiocardiography is giving way to non-invasive imaging methods, each with its own pros and cons. Echocardiography, which is widely used today as a screening system, has a modern pool of techniques for in-depth study of intracardiac anatomy but is insufficient to visualise extracardiac anatomy. Multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) are instrumental in solving diagnostic problems regarding the detailed anatomy of extracardiac structures – pulmonary veins, aortic arch and brachycephalic vessels, pulmonary artery system. Understanding the specific benefits of each imagining method and their conjoint application allows to obtain detailed inputs to define the optimal tactics of surgical treatment.
References
- Chung M.L., Lee B.S., Kim E.A., Kim K.S., Pi S.Y., Oh Y.M. et al. Impact of fetal echocardiography on trends in disease patterns and outcomes of congenital heart disease in a neonatal intensive care unit. Neonatology. 2010; 98 (1): 41–6. DOI: 10.1159/000264673
- Nelle M., Raio L., Pavlovic M., Carrel T., Surbek D., MeyerWittkopf M. Prenatal diagnosis and treatment planning of congenital heart defects-possibilities and limits. World J. Pediatr. 2009; 5 (1): 18–22 DOI: 10.1007/s12519-009-0003-8
- Bennett D., Marcus R., Stokes M. Incidents and complications during pediatric cardiac catheterization. Paediatr. Anaesth. 2005; 15: 1083–8. DOI: 10.1111/j.1460-9592.2005.01677.x
- Khairy P., Ionescu-Ittu R., Mackie A.S., Abrahamowicz M., Pilote L., Marelli A.J. Changing mortality in congenital heart disease. J. Am. Coll. Cardiol. 2010; 56 (14): 1149–57. DOI: 10.1016/j.jacc.2010.03.085
- Roelandt J.R. 50th anniversary of echocardiography: are we on the threshold of a new era? Eur. J. Echocardiogr. 2005; 4: 223–33. DOI: 10.1016/j.euje.2003.08.002
- Chubby H., Simpson J.M. Use of Z-indicators in pediatric cardiology. Ann. Pediatr. Cardiol. 2012; 5 (2): 179–84. DOI: 10.4103/0974-2069.99622
- Hlavacek A.M., Crawford F.A., Jr., Chessa K.S., Shirali G.S. Real-time three-dimensional echocardiography is useful in the evaluation of patients with atrioventricular septal defects. Children’s Heart and Vascular Diseases. 2021; 18 (3) DOI: 10.24022/1810-0686-2021-18-3-157-167 Reviews 166 Echocardiography. 2006; 23: 225–31. DOI: 10.1111/j.1540-8175.2006.00193.x
- Weigand J.D., Gowda S., Lorber R., Madan N. Echocardiographic diagnosis of the left main coronary artery atresia. World J. Pediatr. Congenit. Heart. Surg. 2017; 8 (1): 101–2. DOI: 10.1177/2150135116664702
- Rogova T.V., Bockeria L.A., Aslanidi I.P. Ischemic remodeling of the left ventricle with abnormal departure of the left coronary artery from the pulmonary trunk. Clinical Physiology of Circulaiton. 2013; 3: 57–64 (in Russ.).
- Murala J.S.K., Sankar M.N., Agarwal R. et al. Anomalous origin of the left coronary artery from pulmonary artery in adults. Asian Cardiovasc. Thorac. Ann. 2006; 14: 38–42. DOI: 10.1177/021849230601400110
- Drinkovic N., Margetic E., Smalcelj A., Brida V. Echocardiographic diagnosis of anomalous origin of the left coronary artery from the pulmonary artery. Eur. J. Echocardiogr. 2008; 9 (2): 309–10. DOI: 10.1016/j.euje. 2006.11.012
- Nakabayashi K., Okada H., Iwanami Y., Sugiura R., Oka T. Anomalous origin of the right coronary artery from the pulmonary artery diagnosed in an adult: case report. J. Cardiol. Case. 2014: 10 (3): e111–4. DOI: 10.1016/j.jccase. 2014.06.001
- Grabowski K., Karolczak M.A., Pajak J. Anomalous origin of the right coronary artery from the main pulmonary artery treated surgically in a 6–week-old infant. A case report and review of the literature. Ultrason. 2018; 18 (72): 71–6. DOI: 10.15557/jou.2018.0011
- Buccheri D., Chirco P.R., Geraci S., Caramanno G., Cortese B. Coronary artery fistulae: anatomy, diagnosis and management strategies. Heart Lung Circ. 2018; 27 (8): 940–57. DOI: 10.1016/j.hlc.2017.07.014
- Hoyt W.J., Dean P.N., Schneider D.S., Conaway M.R., Kramer C.M., Battle R.W. Coronary artery evaluation by screening echocardiogram in intercollegiate athletes. Med. Sci. Sports Exerc. 2017; 49 (5): 863–9. DOI: 10.1249/mss.0000000000001182
- Cho S.H., Joo H.C., Yoo K.J., Youn Y.N. Anomalous origin of right coronary artery from left coronary sinus: surgical management and clinical result. Thorac. Cardiovasc. Surg. 2015; 63 (05): 360–6. DOI: 10.1055/s-0034-1376256
- Kim A.I., Rogova T.V., Grigor'yants T.R., Netalieva G.S. Correction of abnormal origin of the left coronary artery from the non-facial sinus of the pulmonary artery in a small infant. Children's Heart and Vascular Diseases. 2018; 15 (3): 165–9 (in Russ.). DOI: 10.24022/1810-0686-2018-15-3-165-168
- Gupta A., Kumar V., Gupta R., Samarany S.A. A case of anomalous origin of the right coronary artery from the left sinus of valsalva with a malignant course. Cureus. 2019; 11 (9): e5794. DOI: 10.7759/cureus.5794
- Al Bugami S., Althobaiti M.W., Alrahemi J., Alsaiedi A.J., AlKashkari W. Coronary intervention of an anomalous left main coronary artery arising from the right sinus of valsalva presented as acute coronary syndrome. J. Cardiol. Cirr. Res. 2016; 5: 184–6. DOI: 10.15406/jccr.2016.05.00184
- Plakhova V.V., Baryshnikova I.Yu., Pursanov M.G., Yurpol'skaya L. A. Echocardiography in the diagnosis of rare congenital anomalies of the pulmonary arteries. Visualization difficulties-errors or limitations of the method? Children's Heart and Vascular Diseases. 2014; 2: 48–53 (in Russ.).
- Zakharova O.E., Plakhova V.V. Echocardiography for the solution of cardiac problemsin newborns and infants with anomalies of the aortic archand brachiocephalic vessels. Russian Journal of Thoracic and Cardiovascular Surgery. 2019; 1: 14–20 (in Russ.). DOI: 10.24022/0236-2791-2019-61-1-14-20
- Kim A.I., Vladimirskaya M.A., Rogova T.V., Erokhina O.V. The choice of surgical tactics for the correction of congenital organic pathology of the mitral valve in young children according to 3D echocardiography. Children's Heart and Vascular Diseases. 2012; 2: 35–41 (in Russ.).
- Han B.K., Rigsby C.K., Leipsic J., Bardo D., Abbara S., Ghoshhajra B. et al. Computed tomography imaging in patients with congenital heart disease, part 2: technical recommendations. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT). J. Cardiovasc. Computed Tomography. 2015; 9 (6): 493–513. DOI: 10.1016/j.jcct.2015.07.007
- Goo H.W. State-of-the-art CT imaging techniques for congenital heart disease. Korean J. Radiol. 2010; 11 (1): 4–18. DOI: 10.3348/kjr.2010.11.1.4
- Makarenko V.N., Yurpol'skaya L.A., Rogova T.V., Kim A.I., Rychina I.E., Aleksandrova S.A. Features of computer tomography methods in the diagnosis of abnormal origin of the left coronary artery from the trunk of the pulmonary artery in patients of different ages. Kardiologiya i SerdechnoSosudistaya Khirurgiya (Cardiology and Cardiovascular Surgery). 2012; 4 (5): 88–97 (in Russ.).
- Stinn B., Stolzmann P., Fornaro J., Hibbeln D., Alkadhi H., Wildermuth S., Leschka S. Technical principles of computed tomography in patients with congenital heart disease. Insights Imaging. 2011; 2 (3): 349–56. DOI: 10.1007/s13244-011-0088-1
- Liu Z., Song L., Yu T., Gao J., Zhang Q., Jiang L. et al. Application of low dose radiation and low concentration contrast media in enhanced CT scans in children with congenital heart disease. Int. J. Clin. Pract. 2016; 70 (Suppl. 9B): B22–8. DOI: 10.1111/ijcp.12857
- Rutz T., Wustmann K., Prsa M., Vallee J.P., Donner B. et al. Cardiac magnetic resonance imaging in congenital heart disease. Cardiovasc. Med. 2016; 19 (6): 176–84. DOI: 10.4414/cvm.2016.00411
- Ordovas K.G., Higgins Ch.B. Delayed contrast enhancement on MR images of myocardium: past, present, future. Radiology. 2011; 261 (2): 358–74. DOI: 10.1148/radiol. 11091882
- Durand D.J, Young M., Nagy P., Tekes A., Huisman T. Mandatory child life consultation and its impact on pediatric MRI workflow in an Academic Medical Center. J. Am. Coll. Radiol. 2015; 12: 594–8. DOI: 10.1016/j.jacr.2014.12.015
- Mc Donald R.J., Mc Donald J.S., Kallmes D.F., Jentoft M.E., Murrau D.L. et al. Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology. 2015; 275 (3): 772–82. DOI: 10.1148/radiol/15150025
About the authors
- Tat’yana V. Rogova, Dr. Med. Sci., Leading Researcher, Cardiologist, ORCID
- Viktoriya V. Plakhova, Dr. Med. Sci., Ultrasonic Diagnostics Physician, ORCID
- Ludmila A. Yurpol'skaya Dr. Med. Sci., Leading Researcher, ORCID