Литература
- Волкова О.В., Пекарский М.И. Эмбриогенез и возрастная гистология внутренних органов человека. М.: Медицина; 1976.
- Wu M. Mechanisms of trabecular formation and specification during cardiogenesis. Pediatr. Cardiol. 2018; 39 (6): 1082–1089. DOI: 10.1007/ s00246-018-1868-x
- Moorman A.F., Christoffels V.M. Cardiac chamber formation: development, genes, and evolution. Physiol. Rev. 2003; 83 (4): 1223–1267. DOI: 10.1152/physrev.00006.2003
- Шпонька И.С. Гистогенетические процессы в развивающемся миокарде млекопитающих. Днепропетровск: Пороги; 1996.
- Кнорре А.Г. Эмбриональный гистогенез (морфологические очерки). Ленинград: Медицина; 1971.
- Tian X., Li Y., He L., Zhang H., Huang X., Liu Q. et al. Identification of a hybrid myocardial zone in the mammalian heart after birth. Nat. Commun. 2017; 8 (1): 87. DOI: 10.1038/s41467-017-00118-1
- Granados-Riveron J.T., Brook J.D. The impact of mechanical forces in heart morphogenesis. Circ. Cardiovasc. Genet. 2012; 5 (1): 132–142. DOI: 10.1161/CIRCGENETICS. 111.961086
- Фальковский Г.Э. Строение сердца и анатомические основы его функции. Материалы курса лекций. М.: НЦССХ им. А.Н. Бакулева РАМН; 2014.
- Granados-Riveron J.T., Ghosh T.K., Pope M., Bu'Lock F., Thornborough C., Eason J. et al. Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects. Hum. Mol. Genet. 2010; 19 (20): 4007–4016. DOI: 10.1093/hmg/ddq315
- Poelmann R.E., Gittenberger-de Groot A.C. Cardiac development. Sci. World J. 2008; 8: 855–858. DOI: 10.1100/tsw.2008.102
- Poelmann R.E., Gittenberger-de Groot A.C., Hierck B.P. The development of the heart and microcirculation: role of shear stress. Med. Biol. Eng. Comput. 2008; 46 (5): 479–484. DOI: 10.1007/s11517-008-0304-4
- Корочкин Л.И. Взаимодействие генов в развитии. М.: Наука; 1976.
- Bajolle F., Zaffran S., Bonnet D. Genetics and embryological mechanisms of congenital heart diseases. Arch. Cardiovasc. Dis. 2009; 102 (1): 59–63. DOI: 10.1016/j.acvd.2008.06.020
- Chi N.C., Bussen M., Brand-Arzamendi K., Ding C., Olgin J.E., Shaw R.M. et al. Cardiac conduction is required to preserve cardiac chamber morphology. Proc. Natl. Acad. Sci. U S A. 2010; 107 (33): 14662–14667. DOI: 10.1073/pnas.0909432107
- Postma A.V., van Engelen K., van de Meerakker J., Rahman T., Probst S., Baars M.J. et al. Mutations in the sarcomere gene MYH7 in Ebstein anomaly. Circ. Cardiovasc. Genet. 2011; 4 (1): 43–50. DOI: 10.1161/CIRCGENETICS.110.957985
- Пеняева Е.В. Генетические аспекты аномалии Эбштейна и связанных с ней заболеваний сердца. Вестник РАМН. 2021; 76: 67–74.
- Digilio M.C., Bernardini L., Lepri F., Giuffrida M.G., Guida V., Baban A. et al. Ebstein anomaly: genetic heterogeneity and association with microdeletions 1p36 and 8p23.1. Am. J. Med. Genet. A. 2011; 155A (9): 2196–2202. DOI: 10.1002/ajmg.a.34131
- Cicenia M., Alesi V., Orlando V., Magliozzi M., Di Tommaso S., Iodice F.G. et al. 8p23.1 deletion: look out for left ventricular hypertrabeculation and not only congenital heart diseases. Single-center experience and literature revision. Am. J. Med. Genet. A. 2022; 188 (3): 883–895. DOI: 10.1002/ajmg.a.62598
- Пеняева Е.В., Ким А.И., Неталиева Г.С., Харитонова С.С. Редкий случай сочетания аномалии Эбштейна и атрезии легочной артерии с интактной межжелудочковой перегородкой. Детские болезни сердца и сосудов. 2015; 1: 56–59.
- Olson E.N. Gene regulatory networks in the evolution and development of the heart. Science. 2006; 313 (5795): 1922–1927. DOI: 10.1126/ science.1132292
- Kirk E.P., Sunde M., Costa M.W., Rankin S.A., Wolstein O., Castro M.L. et al. Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am. J. Hum. Genet. 2007; 81 (2): 280–291. DOI: 10.1086/519530
- Winter E.M., Gittenberger-de Groot A.C. Epicardium-derived cells in cardiogenesis and cardiac regeneration. Cell. Mol. Life Sci. 2007; 64 (6): 692–703. DOI: 10.1007/s00018-007-6522-3
- Stańczak P., Witecka J., Szydło A., Gutmajster E., Lisik M., Auguściak-Duma A. et al. Mutations in mammalian tolloid-like 1 gene detected in adult patients with ASD. Eur. J. Hum. Genet. 2009; 17 (3): 344–351. DOI: 10.1038/ejhg.2008.175
- Sucov H.M., Dyson E., Gumeringer C.L., Price J., Chien K.R., Evans R.M. RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes Dev. 1994; 8 (9): 1007–1018. DOI: 10.1101/gad.8.9.1007
- Niederreither K., Subbarayan V., Dollé P., Chambon P. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat. Genet. 1999; 21 (4): 444–448. DOI: 10.1038/7788
- Stuckmann I., Evans S., Lassar A.B. Erythropoietin and retinoic acid, secreted from the epicardium, are required for cardiac myocyte proliferation. Dev. Biol. 2003; 255 (2): 334–349. DOI: 10.1016/s0012-1606(02)00078-7
- Merki E., Zamora M., Raya A., Kawakami Y., Wang J., Zhang X. et al. Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proc. Natl. Acad. Sci. U S A. 2005; 102 (51): 18455–18460. DOI: 10.1073/pnas.0504343102
- D'Aniello E., Rydeen A.B., Anderson J.L., Mandal A., Waxman J.S. Depletion of retinoic acid receptors initiates a novel positive feedback mechanism that promotes teratogenic increases in retinoic acid. PLoS Genet. 2013; 9 (8): e1003689. DOI: 10.1371/journal.pgen.1003689
- Padang R., Bagnall R.D., Semsarian C. Genetic basis of familial valvular heart disease. Circ. Cardiovasc. Genet. 2012; 5 (5): 569–580. DOI: 10.1161/CIRCGENETICS.112.962894
- Bengoa-Vergniory N., Kypta R.M. Canonical and noncanonical Wnt signaling in neural stem/progenitor cells. Cell. Mol. Life. Sci. 2015; 72(21): 4157–4172. DOI: 10.1007/s00018-015-2028-6
- Eisenmann D.M. Wnt signaling. In: WormBook. 2005: 1–17. DOI: 10.1895/wormbook.1.7.1
- Lai D., Liu X., Forrai A., Wolstein O., Michalicek J., Ah-med I. et al. Neuregulin 1 sustains the gene regulatory network in both trabecular and nontrabecular myocardium. Circ. Res. 2010; 107 (6): 715–727. DOI: 10.1161/CIRCRESAHA.110.218693
- D’Amati G., di Gioia C.R., Giordano C., Gallo P. Myocyte transdifferentiation: a possible pathogenetic mechanism for arrhythmogenic right ventricular cardiomyopathy. Arch. Pathol. Lab. Med. 2000; 124 (2): 287–290. DOI: 10.5858/2000-124-0287-MT
- Eguchi G., Kodama R. Transdifferentiation. Curr. Opin. Cell. Biol. 1993; 5 (6): 1023–1028. DOI: 10.1016/0955-0674(93)90087-7
- Athos C. From conventional congenital cardiac surgery to molecular surgery: between darkness and light. New paradigm for investigation and treatment. The 26th Annual meeting of ASCVTS, 24–27 May, 2018. 2018: 225.
- Porrello E.R., Mahmoud A.I., Simpson E., Hill J.A., Richardson J.A., Olson E.N. et al. Transient regenerative potential of the neonatal mouse heart. Science. 2011; 331 (6020): 1078–1080. DOI: 10.1126/science.1200708
- Porrello E.R., Mahmoud A.I., Simpson E., Johnson B.A., Grinsfelder D., Canseco D. et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl. Acad. Sci. U S A. 2013; 110 (1): 187–192. DOI: 10.1073/pnas.1208863110
- Haubner B.J., Adamowicz-Brice M., Khadayate S., Tiefenthaler V., Metzler B., Aitman T. et al. Complete cardiac regeneration in a mouse model of myocardial infarction. Aging (Albany NY). 2012; 4 (12): 966–977. DOI: 10.18632/aging.100526
- Jesty S.A., Steffey M.A., Lee F.K., Breitbach M., Hesse M., Reining S. et al. c-kit+ precursors support postinfarction myogenesis in the neonatal, but not adult, heart. Proc. Natl. Acad. Sci. U S A. 2012; 109 (33): 13380–13385. DOI: 10.1073/pnas.1208114109
li>Porrello E.R., Olson E.N. A neonatal blueprint for cardiac regeneration. Stem. Cell. Res. 2014; 13 (3 Pt B): 556–570. DOI: 10.1016/j. scr.2014.06.003
- Andersen D.C., Ganesalingam S., Jensen C.H., Sheikh S.P. Do neonatal mouse hearts regenerate following heart apex resection? Stem. Cell Reports. 2014; 2 (4): 406–413. DOI: 10.1016/j.stemcr.2014.02.008
- Uygur A., Lee R.T. Mechanisms of cardiac regeneration. Dev. Cell. 2016; 36 (4): 362–374. DOI: 10.1016/j.devcel. 2016.01.018
- Liu H., Zhang C.H., Ammanamanchi N., Suresh S., Lewarchik C., Rao K. et al. Control of cytokinesis by β-adrenergic receptors indicates an approach for regulating cardiomyocyte endowment. Sci. Transl. Med. 2019; 11 (513). DOI: 10.1126/scitranslmed.aaw6419
- Ieda M., Tsuchihashi T., Ivey K.N., Ross R.S., Hong T.T., Shaw R.M. et al. Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev. Cell. 2009; 16 (2): 233–244. DOI: 10.1016/j.devcel.2008.12.007
- Banerjee I., Fuseler J.W., Price R.L., Borg T.K., Baudino T.A. Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am. J. Physiol. Heart Circ. Physiol. 2007; 293 (3): H1883–Н1891. DOI: 10.1152/ajpheart.00514.2007
- Vega-Hernández M., Kovacs A., De Langhe S., Ornitz D.M. FGF10/FGFR2b signaling is essential for cardiac fibroblast development and growth of the myocardium. Development. 2011; 138 (15): 3331–3340. DOI: 10.1242/dev.064410
- Голубев А.Г. Биология продолжительности жизни и старения. СПб: Издательство Н-Л; 2015: 384.
- Дильман В.М. Четыре модели медицины. Ленинград: Медицина; 1987.
- Егорова И.Ф. Результаты анализа интраоперационных биопсий миокарда у детей с тетрадой Фалло. Грудная и сердечно-сосудистая хирургия. 2001; 4: 8–13.
- Давыдовский И.В. Общая патология человека. 2-е изд., перераб. и доп. М.: Медицина; 1969: 611.
- Aguado T., Gutiérrez F.J., Aix E., Schneider R.P., Giovinazzo G., Blasco M.A. et al. Telomere length defines the cardiomyocyte differentiation potency of mouse induced pluripotent stem cells. Stem Cells. 2017; 35 (2): 362–373. DOI: 10.1002/stem.2497
- Li F., Wang X., Capasso J.M., Gerdes A.M. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development.
J. Mol. Cell. Cardiol. 1996; 28 (8): 1737–1746. DOI: 10.1006/jmcc.1996.0163
- Von Gise A., Lin Z., Schlegelmilch K., Honor L.B., Pan G.M., Buck J.N. et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc. Natl. Acad. Sci. U S A. 2012; 109 (7): 2394–2399. DOI: 10.1073/ pnas.1116136109
- Afify A.R.Y. The long non-coding road to endogenous cardiac regeneration. Heart Fail. Rev. 2019; 24 (4): 587–600. DOI: 10.1007/s10741- 019-09782-5
- Cardoso A.C., Pereira A.H.M., Sadek H.A. Mechanisms of neonatal heart regeneration. Curr. Cardiol. Rep. 2020; 22 (5): 33. DOI: 10.1007/ s11886-020-01282-5
- Nakada Y., Canseco D.C., Thet S., Abdisalaam S., Asaithamby A., Santos C.X. et al. Hypoxia induces heart regeneration in adult mice. Nature. 2017; 541 (7636): 222–227. DOI: 10.1038/nature20173
- Hopkins W.E., Waggoner A.D. Severe pulmonary hypertension without right ventricular failure: the unique hearts of patients with Eisenmenger syndrome. Am. J. Cardiol. 2002; 89 (1): 34–38. DOI: 10.1016/s0002-9149(01)02159-2
- Голухова Е.З. Отчёт о научной и лечебной работе Национального медицинского исследовательского центра сердечно-сосудистой хирургии им. А.Н. Бакулева Минздрава России за 2023 год и перспективы развития. Сердечно-сосудистые заболевания. Бюллетень Научного центра сердечно-сосудистой хирургии им. А.Н. Бакулева РАМН. 2024; 25 (Спецвыпуск): S5–S152. DOI: 10.24022/1810- 0694-2024-25S
Об авторах
Серов Роман Андреевич, д-р мед. наук, профессор, заведующий патолого-анатомическим отделением;
ORCID