Abstract
In addition to genetic factors, epigenetic factors play a major role in cardiac morphogenesis, among which the main factor is the early contractile activity of the myocardium. At the same time, changes in hemodynamics during cardiogenesis seriously affect the development of the embryonic heart. The maturation of different myocardial cells occurs at a variable rate, and already in early embryogenesis, a distinct picture of its mosaicism is clearly revealed by the degree of differentiation of cardiomyocytes. First of all, the mosaic nature of the myocardium is manifested in the presence of its compact and trabecular zones, in which the cells differ not only in the degree of differentiation, but also in proliferative activity and sensitivity to damaging factors. Heterogeneity of the morpho-functional state of cardiomyocytes is preserved in the mature myocardium, which is manifested by the mosaic nature of its damage during total ischemia, for example, due to insufficient protection of the myocardium from ischemia during open-heart surgery. The development of the embryonic heart, especially in early cardiogenesis, is seriously affected by changes in hemodynamics and electrical forces, the latter are necessary to maintain the morphology of the cardiac chambers and can be a key epigenetic factor in cardiac remodeling.
The influence of genetic and epigenetic factors on the development of the heart and the occurrence of its anomalies is carried out through a huge number of signal molecules and morphogenetic factors. At the same time, a wide range of genetic anomalies of the heart, including intracardiac conduction disorders, ventricular septal defect, atrial septal defect, Holt–Oram syndrome, Ebstein anomaly, myocardial dysfunction and dilated cardiomyopathy can result from mutations of just one gene – TBX20. Description of the pathways regulating myocardial development in the pre- and early postnatal period, molecular factors involved in this process, as well as the flow of information on the growth, proliferation, migration, differentiation of cardiomyocytes in embryogenesis has been steadily increasing in recent years. This is due to the fact that the mechanisms regulating these phenomena are studied within the framework of rapidly developing modern regenerative medicine.
Despite the fact that the issue of the relevance of studying the mechanism of rapid switching of cardiomyocyte hyperplasia in the embryonic period to hypertrophy after birth is key in the development of methods for myocardial regeneration within the framework of regenerative medicine in case of myocardial damage in the postnatal period, the circumstances of the transition from hyperplasia to hypertrophy of cardiomyocytes after birth are so numerous and diverse that they require in-depth analysis using modern research methods to identify the key factor underlying this phenomenon, which remains unresolved to this day.
References
- Volkova O.V., Pekarskiy M.I. Embryogenesis and age-related histology of human internal organs. Moscow; 1976 (in Russ.).
- Wu M. Mechanisms of trabecular formation and specification during cardiogenesis. Pediatr. Cardiol. 2018; 39 (6): 1082–1089. DOI: 10.1007/s00246-018-1868-x
- Moorman A.F., Christoffels V.M. Cardiac chamber formation: development, genes, and evolution. Physiol. Rev. 2003; 83 (4): 1223–1267. DOI: 10.1152/physrev.00006.2003
- Shponka I.S. Histogenetic processes in the developing myocardium of mammals. Dnepropetrovsk; 1996 (in Russ.).
- Knorre A.G. Embryonic histogenesis (morphological sketches). Leningrad; 1971 (in Russ.).
- Tian X., Li Y., He L., Zhang H., Huang X., Liu Q. et al. Identification of a hybrid myocardial zone in the mammalian heart after birth. Nat. Commun. 2017; 8 (1): 87. DOI: 10.1038/s41467-017-00118-1
- Granados-Riveron J.T., Brook J.D. The impact of mechanical forces in heart morphogenesis. Circ. Cardiovasc. Genet. 2012; 5 (1): 132–142. DOI: 10.1161/CIRCGENETICS. 111.961086
- Falkovsky G.E. The structure of the heart and the anatomical basis of its function. Lecture course materials. Moscow; 2014 (in Russ.).
- Granados-Riveron J.T., Ghosh T.K., Pope M., Bu'Lock F., Thornborough C., Eason J. et al. Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects. Hum. Mol. Genet. 2010; 19 (20): 4007–4016. DOI: 10.1093/hmg/ddq315
- Poelmann R.E., Gittenberger-de Groot A.C. Cardiac development. Sci. World J. 2008; 8: 855–858. DOI: 10.1100/tsw.2008.102
- Poelmann R.E., Gittenberger-de Groot A.C., Hierck B.P. The development of the heart and microcirculation: role of shear stress. Med. Biol. Eng. Comput. 2008; 46 (5): 479–484. DOI: 10.1007/s11517-008-0304-4
- Korochkin L.I. Interaction of genes in development. Moscow; 1976 (in Russ.).
- Bajolle F., Zaffran S., Bonnet D. Genetics and embryological mechanisms of congenital heart diseases. Arch. Cardiovasc. Dis. 2009; 102 (1): 59–63. DOI: 10.1016/j.acvd.2008.06.020
- Chi N.C., Bussen M., Brand-Arzamendi K., Ding C., Olgin J.E., Shaw R.M. et al. Cardiac conduction is required to preserve cardiac chamber morphology. Proc. Natl. Acad. Sci. U S A. 2010; 107 (33): 14662–14667. DOI: 10.1073/pnas.0909432107
- Postma A.V., van Engelen K., van de Meerakker J., Rahman T., Probst S., Baars M.J. et al. Mutations in the sarcomere gene MYH7 in Ebstein anomaly. Circ. Cardiovasc. Genet. 2011; 4 (1): 43–50. DOI: 10.1161/CIRCGENETICS.110.957985
- Penyaeva E.V. Genetic aspects of Ebstein's anomaly and related heart diseases. Bulletin of the Russian Academy of Medical Sciences. 2021; 76: 67–74 (in Russ.).
- Digilio M.C., Bernardini L., Lepri F., Giuffrida M.G., Guida V., Baban A. et al. Ebstein anomaly: genetic heterogeneity and association with microdeletions 1p36 and 8p23.1. Am. J. Med. Genet. A. 2011; 155A (9): 2196–2202. DOI: 10.1002/ajmg.a.34131
- Cicenia M., Alesi V., Orlando V., Magliozzi M., Di Tommaso S., Iodice F.G. et al. 8p23.1 deletion: look out for left ventricular hypertrabeculation and not only congenital heart diseases. Single-center experience and literature revision. Am. J. Med. Genet. A. 2022; 188 (3): 883–895. DOI: 10.1002/ajmg.a.62598
- Penyaeva E.V., Kim A.I., Netalieva G.S., Kharitonova S.S. A rare case of a combination of Ebstein's anomaly and pulmonary atresia with intact ventricular septum. Children’s Heart and Vascular Diseases. 2015; 1: 56–59 (in Russ.).
- Olson E.N. Gene regulatory networks in the evolution and development of the heart. Science. 2006; 313 (5795): 1922–1927. DOI: 10.1126/science.1132292
- Kirk E.P., Sunde M., Costa M.W., Rankin S.A., Wolstein O., Castro M.L. et al. Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am. J. Hum. Genet. 2007; 81 (2): 280–291. DOI: 10.1086/519530
- Winter E.M., Gittenberger-de Groot A.C. Epicardium-derived cells in cardiogenesis and cardiac regeneration. Cell. Mol. Life Sci. 2007; 64 (6): 692–703. DOI: 10.1007/s00018-007-6522-3
- Stańczak P., Witecka J., Szydło A., Gutmajster E., Lisik M., Auguściak-Duma A. et al. Mutations in mammalian tolloid-like 1 gene detected in adult patients with ASD. Eur. J. Hum. Genet. 2009; 17 (3): 344–351. DOI: 10.1038/ejhg.2008.175
- Sucov H.M., Dyson E., Gumeringer C.L., Price J., Chien K.R., Evans R.M. RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes Dev. 1994; 8 (9): 1007–1018. DOI: 10.1101/gad.8.9.1007
- Niederreither K., Subbarayan V., Dollé P., Chambon P. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat. Genet. 1999; 21 (4): 444–448. DOI: 10.1038/7788
- Stuckmann I., Evans S., Lassar A.B. Erythropoietin and retinoic acid, secreted from the epicardium, are required for cardiac myocyte proliferation. Dev. Biol. 2003; 255 (2): 334–349. DOI: 10.1016/s0012-1606(02)00078-7
- Merki E., Zamora M., Raya A., Kawakami Y., Wang J., Zhang X. et al. Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proc. Natl. Acad. Sci. U S A. 2005; 102 (51): 18455–18460. DOI: 10.1073/pnas.0504343102
- D'Aniello E., Rydeen A.B., Anderson J.L., Mandal A., Waxman J.S. Depletion of retinoic acid receptors initiates a novel positive feedback mechanism that promotes teratogenic increases in retinoic acid. PLoS Genet. 2013; 9 (8): e1003689. DOI: 10.1371/journal.pgen.1003689
- Padang R., Bagnall R.D., Semsarian C. Genetic basis of familial valvular heart disease. Circ. Cardiovasc. Genet. 2012; 5 (5): 569–580. DOI: 10.1161/CIRCGENETICS.112.962894
- Bengoa-Vergniory N., Kypta R.M. Canonical and noncanonical Wnt signaling in neural stem/progenitor cells. Cell. Mol. Life. Sci. 2015; 72(21): 4157–4172. DOI: 10.1007/s00018-015-2028-6
- Eisenmann D.M. Wnt signaling. In: WormBook. 2005: 1–17. DOI: 10.1895/wormbook.1.7.1
- Lai D., Liu X., Forrai A., Wolstein O., Michalicek J., Ah-med I. et al. Neuregulin 1 sustains the gene regulatory network in both trabecular and nontrabecular myocardium. Circ. Res. 2010; 107 (6): 715–727. DOI: 10.1161/CIRCRESAHA.110.218693
- D’Amati G., di Gioia C.R., Giordano C., Gallo P. Myocyte transdifferentiation: a possible pathogenetic mechanism for arrhythmogenic right ventricular cardiomyopathy. Arch. Pathol. Lab. Med. 2000; 124 (2): 287–290. DOI: 10.5858/2000-124-0287-MT
- Eguchi G., Kodama R. Transdifferentiation. Curr. Opin. Cell. Biol. 1993; 5 (6): 1023–1028. DOI: 10.1016/0955-0674(93)90087-7
- Athos C. From conventional congenital cardiac surgery to molecular surgery: between darkness and light. New paradigm for investigation and treatment. The 26th Annual meeting of ASCVTS, 24–27 May, 2018. 2018: 225.
- Porrello E.R., Mahmoud A.I., Simpson E., Hill J.A., Richardson J.A., Olson E.N. et al. Transient regenerative potential of the neonatal mouse heart. Science. 2011; 331 (6020): 1078–1080. DOI: 10.1126/science.1200708
- Porrello E.R., Mahmoud A.I., Simpson E., Johnson B.A., Grinsfelder D., Canseco D. et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl. Acad. Sci. U S A. 2013; 110 (1): 187–192. DOI: 10.1073/pnas.1208863110
- Haubner B.J., Adamowicz-Brice M., Khadayate S., Tiefenthaler V., Metzler B., Aitman T. et al. Complete cardiac regeneration in a mouse model of myocardial infarction. Aging (Albany NY). 2012; 4 (12): 966–977. DOI: 10.18632/aging.100526
- Jesty S.A., Steffey M.A., Lee F.K., Breitbach M., Hesse M., Reining S. et al. c-kit+ precursors support postinfarction myogenesis in the neonatal, but not adult,
heart. Proc. Natl. Acad. Sci. U S A. 2012; 109 (33): 13380–13385. DOI: 10.1073/pnas.1208114109
- Porrello E.R., Olson E.N. A neonatal blueprint for cardiac regeneration. Stem. Cell. Res. 2014; 13 (3 Pt B): 556–570. DOI: 10.1016/j. scr.2014.06.003
- Andersen D.C., Ganesalingam S., Jensen C.H., Sheikh S.P. Do neonatal mouse hearts regenerate following heart apex resection? Stem. Cell Reports. 2014; 2 (4): 406–413. DOI: 10.1016/j.stemcr.2014.02.008
- Uygur A., Lee R.T. Mechanisms of cardiac regeneration. Dev. Cell. 2016; 36 (4): 362–374. DOI: 10.1016/j.devcel. 2016.01.018
- Liu H., Zhang C.H., Ammanamanchi N., Suresh S., Lewarchik C., Rao K. et al. Control of cytokinesis by β-adrenergic receptors indicates an approach for regulating cardiomyocyte endowment. Sci. Transl. Med. 2019; 11 (513). DOI: 10.1126/scitranslmed.aaw6419
- Ieda M., Tsuchihashi T., Ivey K.N., Ross R.S., Hong T.T., Shaw R.M. et al. Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev. Cell. 2009; 16 (2): 233–244. DOI: 10.1016/j.devcel.2008.12.007
- Banerjee I., Fuseler J.W., Price R.L., Borg T.K., Baudino T.A. Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am. J. Physiol. Heart Circ. Physiol. 2007; 293 (3): H1883–Н1891. DOI: 10.1152/ajpheart.00514.2007
- Vega-Hernández M., Kovacs A., De Langhe S., Ornitz D.M. FGF10/FGFR2b signaling is essential for cardiac fibroblast development and growth of the myocardium. Development. 2011; 138 (15): 3331–3340. DOI: 10.1242/dev.064410
- Golubev A.G. Biology of lifespan and aging. St. Petersburg; 2015: 384 (in Russ.).
- Dilman V.M. Four models of medicine. Leningrad; 1987 (in Russ.).
- Egorova I.F. Results of analysis of intraoperative myocardial biopsies in children with tetralogy of Fallot. Grudnaya i Serdechno-Sosudistaya Khirurgiya. 2001; 4: 8–13 (in Russ.).
- Davydovskiy I.V. General human pathology. 2nd ed., rev. and exp. Moscow; 1969: 611 (in Russ.).
- Aguado T., Gutiérrez F.J., Aix E., Schneider R.P., Giovinazzo G., Blasco M.A. et al. Telomere length defines the cardiomyocyte differentiation potency of mouse induced pluripotent stem cells. Stem Cells. 2017; 35 (2): 362–373. DOI: 10.1002/stem.2497
- Li F., Wang X., Capasso J.M., Gerdes A.M. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development.
J. Mol. Cell. Cardiol. 1996; 28 (8): 1737–1746. DOI: 10.1006/jmcc.1996.0163
- Von Gise A., Lin Z., Schlegelmilch K., Honor L.B., Pan G.M., Buck J.N. et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc. Natl. Acad. Sci. U S A. 2012; 109 (7): 2394–2399. DOI: 10.1073/pnas.1116136109
- Afify A.R.Y. The long non-coding road to endogenous cardiac regeneration. Heart Fail. Rev. 2019; 24 (4): 587–600. DOI: 10.1007/s10741- 019-09782-5
- Cardoso A.C., Pereira A.H.M., Sadek H.A. Mechanisms of neonatal heart regeneration. Curr. Cardiol. Rep. 2020; 22 (5): 33. DOI: 10.1007/s11886-020-01282-5
- Nakada Y., Canseco D.C., Thet S., Abdisalaam S., Asaithamby A., Santos C.X. et al. Hypoxia induces heart regeneration in adult mice. Nature. 2017; 541 (7636): 222–227. DOI: 10.1038/nature20173
- Hopkins W.E., Waggoner A.D. Severe pulmonary hypertension without right ventricular failure: the unique hearts of patients with Eisenmenger syndrome. Am. J. Cardiol. 2002; 89 (1): 34–38. DOI: 10.1016/s0002-9149(01)02159-2
- Golukhova E.Z. Report on the scientific and clinical activity of Bakoulev National Medical Research Center for Cardiovascular Surgery for 2023 and development prospects. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2024; 25 (Special Issue): S5–S152 (in Russ.). DOI: 10.24022/1810- 0694-2024-25S
About the authors
Roman A. Serov, Dr. Med. Sci., Professor, Head of Pathological Department;
ORCID