Abstract
Major aortopulmonary collateral arteries are persistent embryonic arteries, which are quite common in such congenital heart defects as a single ventricle defect, tetralogy of Fallot, pulmonary atresia. The presence of such collaterals in the postnatal period may be associated with the development of heart failure in a child, infectious diseases of the respiratory tract, pulmonary hypertension. One of the reasons for such complications is the presence of competitive blood flow in the collaterals. In this article we present a clinical case of successful endovascular closure of hemodynamically significant major aortopulmonary collaterals by spirals in a child with a single ventricle defect in combination with aortic coarctation.
References
- Bocharov A.V., Popov L.V. Competitive blood flow: definition, biophysical basis, mechanisms of occurrence in clinical practice, clinical and angiographic diagnostic criteria. Clinical Physiology of Circulation. 2021; 18 (2): 165–71 (in Russ.). DOI: 10.24022/1814-6910-2021-18-2-165-171
- Glineur D., Hanet C. Competitive flow in coronary bypass surgery. Curr. Opin. Cardiol. 2012; 27 (6); 620–8. DOI: 10.1097/hco.0b013e3283583000
- Sabik J.F., Lytle B.W., Blackstone E.H., Khan M., Houghtaling P.L., Cosgrove D.M. Does competitive flow reduce internal thoracic artery graft patency? Ann. Thorac. Surg. 2003; 76 (5): 1490–7. DOI: 10.1016/s0003-4975(03)01022-1
- Martins L., Oliveira R.S., Silva P., Marinho J., Sousa G., Castela E. Giant major aortopulmonary collateral artery: A rare cause of heart murmur in newborns. Rev. Portug. Cardiol. (En. Ed.). 2014; 33 (7–8); 483–5. DOI: 10.1016/j. repce.2014.02.009
- Ajay A., Anoop A., Jineesh V., Harshith K., Deepa S., SabarinathM. Major aortopulmonary collateral arteries. Cardiothorac. Imag. 2022; 4 (1); 1–12. DOI: 10.1148/ryct.210157
- Ito T., Ishigami M., Ishizu Y., Kuzuya T., Honda T., Matsushima M. et al. Successful treatment of esophageal bleeding due to rupture of major aortopulmonary collateral arteries by transcatheter arterial embolization. Clin. J. Gastroenterol. 2018; 12 (1); 20–4. DOI: 10.1007/s12328-018-0895-8
- Kunwar B.K., Paddalwar S., Ghogare M. Large isolated major aortopulmonary collateral artery causing severe pulmonary hypertension in an infant: a rare and challenging diagnosis. J. Clin. Diagn. Res. 2017; 11 (6); 18–20. DOI: 10.7860/JCDR/2017/27645.10094
- Tinmaswala M.A., Saple P.P., Gupta A., Amin K. Isolated major aortopulmonary collateral artery causing CCF in a newborn: a case report. Int. J. Med. Res. Health Sci. 2015; 4 (2): 471–3.
- Joynt M.R., Lu J.C., Bocks M.L., Crowley D.C. Ruptured aneurysm of a major aortopulmonary collateral. Eur. Heart J. 2015; 37 (22): 1777. DOI: 10.1093/eurheartj/ehv311
- Nijres B.M., Aregullin E.O., Al-Khatib Y., Samuel B.P., Abdulla R., Hijazi Z.M. et al. Aortopulmonary collaterals in single ventricle physiology: variation in understanding occlusion practice among interventional cardiologists. Pediatric Cardiol. 2020; 41 (8); 1608–16. DOI: 10.1007/s00246-020-02418-8
- Gindes L., Salem Y., Gasnier R., Raucher A., Tamir A., Assa S. et al. Prenatal diagnosis of major aortopulmonary collateral arteries (MAPCA) in fetuses with pulmonary atresia with ventricular septal defect and agenesis of ductus arteriosus. J. Matern. Fet. Neonat. Med. 2021; 1–9. DOI: 10.1080/14767058.2021.1881475
- Anwar S., Rockefeller T., Raptis D.A., Woodard P.K., Eghtesady P. 3D printing provides a precise approach in the treatment of tetralogy of Fallot, pulmonary atresia with major aortopulmonary collateral arteries. Curr. Treat. Opt. Cardiovasc. Med. 2018; 20 (1): 1–9. DOI: 10.1007/s11936-018-0594-2
- Van de Woestijne P.C., Bakhuis W., Sadeghi A.H., Peek J.J., Taverne Y.J.H.J., Bogers A.J.J.C. 3D virtual reality imaging of major aortopulmonary collateral arteries: a novel diagnostic modality. World J. Pediatr. Congenit. Heart Surg. 2021; 12 (6): 765–72. DOI: 10.1177/21501351211045064
- McElhinney D.B., Reddy V.M., Tworetzky W., Petrossian E., Hanley F.L., Moore P. Incidence and implications of systemic to pulmonary collaterals after bidirectional cavopulmonary anastomosis. Ann. Thorac. Surgery. 2000; 69 (4); 1222–8. DOI: 10.1016/s0003-4975(99)01088-7
- Banka P., Sleeper L.A., Atz A.M., Cowley C.G., Gallagher D., Gillespie M.J. et al. Practice variability and outcomes of coil embolization of aortopulmonary collaterals before fontan completion: a report from the Pediatric Heart Network Fontan Cross-Sectional Study. Am. Heart J. 2021; 162 (1); 125–30. DOI: 10.1016/j.ahj.2011.03.021
- Fang Y., Xiong Z., Wang Y., Li B., Wang Z., Kang D. et al. Density of aortopulmonary collaterals predicts in-hospital outcome in tetralogy of Fallot with pulmonary stenosis. Interact. Cardiovasc. Thorac. Surg. 2022; 34 (2); 307–14. DOI: 10.1093/icvts/ivab238
- Glatz A.C., Rome J.J., Small A.J., Gillespie M.J., Dori Y., Harris M.A. et al. Systemic-to-pulmonary collateral flow, as measured by cardiac magnetic resonance imaging, is associated with acute post-Fontan clinical outcomes. Circ. Cardiovasc. Imag. 2012; 5 (2); 218–25. DOI: 10.1161/circimaging.111.966986
- Odenwald T., Quail M.A., Giardini A., Khambadkone S., Hughes M., Tann O. et al. Systemic to pulmonary collateral blood flow influences early outcomes following the total cavopulmonary connection. Heart. 2012; 98 (12); 934–40. DOI: 10.1136/heartjnl-2011-301599
- Guan Q., Li J., Deng K., Wu X., Tang S., Fan C. et al. Clinical study to individual treatment for major aortopulmonary collaterals of tetralogy of Fallot. BioMed. Research. Intern. 2019; 1–6. DOI: 10.1155/2019/1603712
- Caspi J., Pettitt T.W., Ferguson T.B., Stopa A.R., Sandhu S.K. Effects of controlled antegrade pulmonary blood flow on cardiac function after bidirectional cavopulmonary anastomosis. Ann. Thorac. Surg. 2003; 76: 1917–21. DOI: 10.1016/s0003-4975(03)01198-6
- Ferns S.J., El Zein C., Multani K., Sajan I., Subramanian S., Polimenakos A.C. et al. Is additional pulsatile pulmonary blood flow beneficial to patients with bidirectional Glenn? J. Thorac. Cardiovasc. Surg. 2013; 145: 451–4. DOI: 10.1016/j.jtcvs.2012.11.027
- Starnes S.L., Duncan B.W., Kneebone J.M., Rosenthal G.L., Jones T.K., Grifka R.G. et al. Vascular endothelial growth factor and basic fibroblast growth factor in children with cyanotic congenital heart disease. J. Thorac. Cardiovasc. Surg. 2000; 119: 534–9. DOI: 10.1016/s0022-5223(00)70133-4
About the authors
- Denis A. Manannikov, Resident Physician; ORCID
- Artem V. Gorbatykh, Cand. Med. Sci., Head of Research Laboratory of Interventional Surgery, Endovascular Surgeon; ORCID
- Ilya A. Soynov, Cand. Med. Sci., Cardiovascular Surgeon; ORCID
- Aleksei A. Prokhorikhin, Cand. Med. Sc., Endovascular Surgeon; ORCID
- Dmitriy D. Zubarev, Cand. Med. Sci., Head of Department of X-ray Surgical Methods of Diagnosis and Treatment; ORCID
- Igor’ I. Averkin, Pediatric Cardiologist; ORCID
- Alina A. Ivanilova, Resident Physician; ORCID
- Mikhail A. Chernyavskiy, Dr. Med. Sci., Chief Researcher, Head of Research Department of Vascular and Interventional Surgery, Cardiovascular Surgeon; ORCID