Abstract
Objective. To assess the frequency of prenatal detection and the structure of extracardiac pathology (ECP) potentially complicating the course of the neonatal period by ultrasound examination of fetuses with congenital heart defects (CHD).
Material and methods. 436 pregnant patients with fetal CHD were examined at the gestational age of 16-40 weeks at the Perinatal Cardiological Center of the Bakoulev National Medical Research Center of Cardiovascular Surgery and National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov in 2018–2021.
Results. ECP was detected in 77 (17.7%) cases, including genitourinary system anomalies in 35 (8.0%) fetuses, gastrointestinal tract anomalies in 24 (5.5%) fetuses, facial structures anomalies in 10 (2.3%) fetuses, facial anomalies in 2 (0.5%) fetuses, and multisystem lesions in 6 (1.4%) fetuses. The rate of ECP depending on the type of CHD was: 94.1% (16/17) in heterotaxic syndromes, 29.0% (9/31) in atrioventricular septal defect, 25% (2/8) in common arterial trunk, 22.2% (12/54) in tetralogy of Fallot and 22.2% (4/18) in double outlet right ventricle, 21.4% (3/14) in univentricular heart, 16.7% (2/12) in stenosis / atresia of the tricuspid valve, 14.3% (1/7) in the aortic stenosis, 13% (3/23) in the pulmonary valve anomalies, 11.7% (4/34) in non-obstructive and 9.5% (10/105) in obstructive aortic arch lesions, 7.7% (2/26) in hypoplastic left heart syndrome, 6.6% (1/15) in tricuspid dysplasia / Ebstein's anomaly, 5.8% (3/52) in transposition of the great arteries cases. Also, a high frequency ECP was determined in fetuses with venous return anomalies (4/4 of cases).
Conclusion. Cases with fetal CHD are at increased risk for the presence of ECP that can potentially complicate the course of the neonatal period. It is necessary to conduct a detailed examination of the organs and structures of the fetus as soon as possible after the diagnosis of CHD is established for the earliest possible formation of a high-risk group of cases with unfavorable perinatal outcomes and for correct and timely routing of the patient.
References
- Cooper, P. Strategies to reduce perinatal mortality. The Lancet Global Health. 2016; 4 (1): e6–e7. DOI: 10.1016/S2214-109X(15)00268-5
- Birth defects surveillance: a manual for programme managers, second edition. Geneva: World Health Organization; 2020; 116. Licence: CC BY-NC-SA 3.0 IGO. Available at: https://www.who.int/publications-detail/9789241548724
- The main indicators of maternal and child health, the activities of the child protection and obstetric service in the Russian Federation for 2019. Moscow; 2020. Available at: https://mednet.ru/images/materials/statistika/2020/2020_v2/13_osnovnye_pokazateli_zdorovya_materi_i_rebenkadeyatelnost_sluzhby_ohrany_detstva_i_rodovspomozheniya_ 2019_4c683.doc (accessed 06 November, 2021) (in Russ.).
- The state of health of pregnant women, women in childbirth, puerperas and newborns. Moscow; 2018. Available at: https://rosstat.gov.ru/folder/13721 (accessed 06 November, 2021) (in Russ.).
- Collection of static materials on diseases of the circulatory system. Moscow; 2018. Available at: http://mednet.ru/images/stories/kardio2017.pdf (accessed 06 November, 2021) (in Russ.).
- Bockeria L.A., Gudkova R.G. Cardiovascular Surgery. Diseases and congenital anomalies of the circulatory system. Moscow; 2016 (in Russ.).
- Boсkeria L.A. The results of scientific, clinical and organizational activities of Bakoulev National Medical Research Center for Cardiovascular Surgery in 2019. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2020; 21 (S): 5–105 (in Russ.). DOI: 10.24022/1810-0694-2020-21S-S5-S112
- Marelli A., Miller S.P., Marino B.S., Jefferson A.L., Newburger J.W. Brain in congenital heart disease across the lifespan: the cumulative burden of injury. Circulation. 2016; 133 (20): 1951–62. DOI: 10.1161/CIRCULATIONAHA. 115.019881
- Sood E., Jacobs J.P., Marino B.S. The Cardiac Neurodevelopmental Outcome Collaborative: a new community improving outcomes for individuals with congenital heart disease. Cardiol. Young. 2020; 30 (11): 1595–6. DOI: 10.1017/S1047951120003509
- Kaltman J.R., Burns K.M., Pearson G.D., Goff D.C., Evans F. Disparities in congenital heart disease mortality based on proximity to a specialized pediatric cardiac center. Circulation. 2020; 141 (12): 1034–6. DOI: 10.1161/CIRCULATIONAHA.119.043392
- Shvedunova V.I., Dedushkina N.Yu., Baryshnikova I.Yu., Tokmakova K.A., Zelenikin M.A. Results of surgical correction of congenital heart defects in children with extracardiac pathology. Children's Heart and Vascular Diseases. 2012; 2: 20–6. eLIBRARY ID: 17898268 (in Russ.).
- Alsoufi B., McCracken C., Oster M., Shashidharan S., Kanter K. Genetic and extracardiac anomalies are associated with inferior single ventricle palliation outcomes. Ann. Thorac. Surg. 2018; 106 (4): 1204–12.
- Puri K., Morris S.A., Mery C.M., Wang Y., Moffett B.S., Heinle J.S. et al. Characteristics and outcomes of children with ductal-dependent congenital heart disease and esophageal atresia/tracheoesophageal fistula: A multi-institutional analysis. Surgery. 2018; 163 (4): 847–53. DOI: 10.1016/j.surg.2017.09.010
- Słodki M., Soroka M., Rizzo G., Respondek-Liberska M. The International Prenatal Cardiology Collaboration Group. Prena-tal Atrioventricular Septal Defect (AVSD) as a planned congenital heart disease with different outcome depending on the presence of the coexisting extracardiac abnormalities (ECA) and/or malformations (ECM). J. Matern. Fetal. Neonatal. Med. 2020; 33 (15): 2635–41. DOI: 10.1080/14767058.2018.1556254
- Bensemlali M., Bajolle F., Ladouceur M., Fermont L., Levy M., Le Bidois J. et al. Associated genetic syndromes and extracardiac malformations strongly influence outcomes of fetuses with congenital heart diseases. Arch. Cardiovasc. Dis. 2016; 109: 330–6. DOI: 10.1016/j.acvd.2016.01.006
- Biryukova S.R., Mokrushina O.G., Ilyin V.N. The effectiveness of surgical care for newborns and infants with congenital heart defects and concomitant extracardiac pathology in a multidisciplinary children's clinical hospital. Cardiology and Cardiovascular Surgery. 2021; 14 (1): 5–10 (in Russ.). DOI: 10.17116/kardio2021140115
- Chang C.-S., Hong S., Kim S., Kim Y., Sung J.-H., Choi S.-J. et al. Prevalence of associated extracardiac anomalies in prenatally diagnosed congenital heart diseases. PLoS ONE. 2021; 16 (3): e0248894. DOI: 10.1371/journal.pone.0248894
- Oepkes D., Haak M. Extracardiac malformations: associations and importance: consequences for perinatal management of foetal cardiac patients. Cardiol. Young. 2014; Suppl. 2: 55–9. DOI: 10.1017/S1047951114001425
- Salomon L.J., Alfirevic Z., Berghella V., Bilardo C., Hernandes–Andrade E., Johnsen S.L. et al. Practice guidelines for performance of the routine mid-trimester fetal ultrasound scan. Ultrasound Obstet. Gynecol. 2011; 37 (1): 116–26. DOI: 10.1002/uog.8831
- Nguyen H.T., Herndon C.D., Cooper C., Gatti J., Kirsch A., Kokorowski P. et al. The Society for Fetal Urology consensus statement on the evaluation and management of antenatal hydronephrosis. J. Pediatr. Urol. 2010; 6 (3): 212–31. DOI: 10.1016/j.jpurol.2010.02.205
- Yarygina T.A., Gasanova R.M., Leonova E.I., Marzoeva O.V., Sypchenko E.V., Talolina O.V., Gus A.I. The introduction of multiplanar neurosonography in the complex examination of fetuses with congenital heart defects: the first Russian experience. The Bulletin of Bakoulev Center. Cardiovascular Deseases. 2021; 2 (22): 231–8 (in Russ.). DOI: 10.24022/1810-0694-2021-22-2-231-238
- Agathokleous M., Chaveeva P., Poon L.C.Y., Kosinski P., Nicolaides K.H. Meta-analysis of second-trimester markers for trisomy
- Ultrasound Obstet. Gynec. 2013; 41 (3): 247–61.
- Buca D.I.P., Khalil A., Rizzo G., Familiari A., Di Giovanni S., Liberati M. et al. Outcome of prenatally diagnosed fetal heterotaxy: systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2018; 51 (3): 323–30. DOI: 10.1002/uog.17546
- Sawyer T., Stacey M., Mulreany M., Thompson M., Nitschke Y., Rutsch F., Mahnke C.B. Generalized arterial calcification of infancy associated with meconium peritonitis: a case report and review of the literature. Am. J. Perinatol. 2009; 26 (10): 711–6. DOI: 10.1055/s-0029-1223282
- Terlizzi V., Sciarrone A., Cook A.C., Botta G., Chiappa E. Extensive myocardial infarction in a fetus with cystic fibrosis and meconium peritonitis. J. Ultrasound. Med. 2016; 35 (8): 1826–8. DOI: 10.7863/ultra.15.09037
- Shinar S., Agrawal S., Ryu M., Van Mieghem T., Daneman A., Ryan G. et al. Fetal meconium peritonitis – prenatal findings and postnatal outcome: a case series, systematic review, and meta-analysis. Ultraschall Med. 2020; 43 (2): 194–203. DOI: 10.1055/a-1194-4363. Epub ahead of print.
- Williams J.L., Torok R.D., D'Ottavio A., Spears T., Chiswell K., Forestieri N.E. et al. Causes of death in infants and children with congenital heart disease. Pediatr. Cardiol. 2021; 42 (6): 1308–15. DOI: 10.1007/s00246-021-02612-2
- Bera S.I., Sergeichik L.S., Grinkevich M.V. Congenital lymphangiectasia of the lungs. Actual problems of childhood pathology: materials of the jubilee scientific-practical. conf. with rep. participation, dedicated. To the 100th anniversary of the institution “Gomel. Region. Children's clinic. Hospital”, Gomel, April 17. 2020. Gomel. region children's wedge. hospital, Gomel. state med. univ.; resp. ed. A.V. Dezhurko et al. Gomel; 2020; 24–8 (in Russ.).
- Paladini D., Pistorio A., Wu L.H., Meccariello G., Lei T., Tuo G. et al. Prenatal diagnosis of total and partial anomalous pulmonary venous connection: multicenter cohort study and meta-analysis. Ultrasound Obstet. Gynecol. 2018; 52: 24–34. DOI: 10.1002/uog.18907
- Society for Maternal-Fetal Medicine, Benacerraf B.R., Bromley B., Jelin A.C. Micrognathia. Am. J. Obstet. Gynecol. 2019; 221 (5): B13–B15. DOI: 10.1016/j.ajog.2019.08.051
- Bu H., Liu L., Hu S., Tan Z., Zhao T. Targeted next-generation sequencing for research and diagnostics in congenital heart disease, and cleft lip and/or palate. Mol. Med. Rep. 2019; 19 (5): 3831–40. DOI: 10.3892/mmr.2019.10043
- Toubat O., Mallios D.N., Munabi N.C.O., Magee W.P. 3rd, Starnes V.A., Kumar S.R. Clinical Importance of Concomitant Cleft Lip/Palate in the Surgical Management of Patients With Con-genital Heart Disease. World J. Pediatr. Congenit. Heart Surg. 2021; 12 (1): 35–42. DOI: 10.1177/2150135120954814
- Bosselut H., Panuel M., Sigaudy S., Gorincour G., Chaumoitre K., Bretelle F. The complementary role of imaging modalities in Binder phenotype. Can prognostic factors of neonatal respiratory distress be found? Prenat. Diagn. 2019; 39 (7): 549–62. DOI: 10.1002/pd.5469
- Simmonds J.C., Patel A.K., Mildenhall N.R., Mader N.S., Scott A.R. Neonatal macroglossia: demographics, cost of care, and associated comorbidities. Cleft. Palate. Craniofac. J. 2018; 55 (8): 1122–9. DOI: 10.1177/1055665618760898
- Lee H.J., Yu H.W., Kim G.B., Shin C.H., Yang S.W., Lee Y.A. Clinical course of infants with congenital heart disease who developed thyroid dysfunction within 100 days. Ann. Pediatr. Endocrinol. Metab. 2017; 22 (4): 253–8. DOI: 10.6065/apem.2017.22.4.253
- Parikh C.R., Greenberg J.H., McArthur E., Thiessen-Philbrook H., Everett A.D., Wald R. et al. Incidence of ESKD and mortality among children with congenital heart disease after cardiac surgery. Clin. J. Am. Soc. Nephrol. 2019; 14 (10): 1450–7.
- Greenberg J.H., Zappitelli M., Devarajan P., Thiessen-Philbrook H.R., Krawczeski C., Li S. et al. TRIBE-AKI consortium. kidney outcomes 5 years after pediatric cardiac surgery: the TRIBE-AKI study. JAMA Pediatr. 2016; 170 (11): 1071–8. DOI: 10.1001/jamapediatrics.2016.1532
- Николаев В.В., Солонцов Ю.Н. Эпидемиология и причины роста распространенности гипоспадии. Педиатрия. 2018; 97 (5): 112–7. Children’s Heart and Vascular Diseases. 2021; 18 (4) DOI: 10.24022/1810-0686-2021-18-4-269-280 Nikolaev V.V., Solontsov Yu.N. Epidemiology and causes of increased prevalence of hypospadias. Pediatria. 2018; 97 (5): 112–7 (in Russ.).
- Yu X., Nassar N., Mastroiacovo P., Canfield M., Groisman B., Bermejo-Sánchez E. et al. Hypospadias prevalence and trends in international birth defect surveillance systems, 1980–2010. Eur. Urol. 2019; 76 (4): 482–90.
- Ludorf K.L., Benjamin R.H., Sanchez M.L.N., McLean S.D., Northrup H., Mitchell L. E. et al. Patterns of co-occurring birth defects among infants with hypospadias. J. Pediatr. Urol. 2021; 17 (1): 64-e1. 41. Zaidi S., Brueckner M. Genetics and genomics of congenital heart disease. Circ. Res. 2017; 120 (6): 923–40. DOI: 10.1161/CIRCRESAHA.116.309140
- Lautz T.B., Mandelia A., Radhakrishnan J. VACTERL associations in children undergoing surgery for esophageal atresia and anorectal malformations: Implications for pediatric surgeons. J. Pediatr. Surg. 2015; 50 (8): 1245–50. DOI: 10.1016/j.jpedsurg.2015.02.049
- Barris D.M., Brailovschi Y., Shah A., Levasseur S., NhanChang C.L., Miller R., Freud L.R. The role of fetal echocardiogram after detection of extracardiac anomalies in utero (fetal echocardiogram forextracardiac malformations). Prenat. Diagn. 2021; 41 (9): 1134–9. DOI: 10.1002/pd.6012
About the authors
- Tamara A. Yarygina, Cand. Med. Sci., Ultrasonic Diagnostician; ORCID
- Rena M. Gasanova, Dr. Med. Sci., Сardiologist, Ultrasonic Diagnostician; ORCID
- Elena I. Leonova, Ultrasonic Diagnostician; ORCID
- Ol’ga V. Marzoeva, Cand. Med. Sci., Ultrasonic Diagnostician, Researcher; ORCID
- Elena V. Sypchenko, Cand. Med. Sci., Ultrasonic Diagnostician; ORCID
- Aleksandr I. Gus, Dr. Med. Sci., Professor, Chief Researcher; ORCID