Abstract
The purpose of this study was to conduct a comparative analysis of head circumference, Doppler assessment of the middle cerebral artery (MCA) and cerebroplacental ratio (CPR), as well as to assess the relationship between fetometric and Doppler parameters in groups with congenital heart disease (CHD) and healthy fetuses.
Material and methods. A retrospective case-control study included 189 patients with diagnosed fetal CHD and 708 patients with healthy fetuses (control group), who were examined at 22–40 weeks of gestation. Cerebral parameters studied included fetal head circumference, pulsation index (PI) and peak systolic velocity (PSV) in MCA and CPR.
Results. In the group of fetuses with CHD, compared with healthy fetuses, lower median values of percentile of head circumference (55.3 vs 62.8), PI in the MCA (41.5 vs 48.2) and CPR (28.3 vs 41.3) (p < 0.01) were noted. The percentage of cases with head circumference < 10th percentile, PI in the MCA and CPR < 5th percentile was significantly higher in fetuses with CHD than in the control group, amounting to 9.0% vs 3.8%, 10.6% vs 2.1%, 19.6% vs 5.4%, respectively (p < 0.01). MCC values in the MCA were significantly lower in fetuses with CHD at all gestational periods studied (p < 0.05). In both study groups, of all studied Doppler parameters, only for CPR, a direct relationship was found with the values of the fetal head circumference (p < 0.01).
Findings. Cases with CHD of the fetus are at increased risk for the presence of cerebral blood flow redistribution and slowing down the growth of the head circumference. It is necessary to introduce mandatory dynamic antenatal control of these parameters from the moment of detection of cardiac pathology to delivery, aimed at the earliest possible detection of Doppler signs of perinatal hypoxia and appropriate correction of obstetric tactics.
References
- Tumanyan M.R., Svobodov A.A., Levchenko E.G., Krylova A.S. Low-weight children with congenital heart defects: the treatment experience in Bakoulev Center and analysis of international literature. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2021; 22 (2): 221–30 (in Russ.). DOI: 10.24022/1810-0694-2021-22-2-221-230
- Best K.E., Tennant P.W.G., Rankin J. Survival, by birth weight and gestational age, in individuals with congenital heart disease: a population-based study. J. Am. Heart Assoc. 2017; 6 (7): e005213. DOI: 10.1161/JAHA.116.005213
- Tomotaki H., Toyoshima K., Tomotaki S., Shimokaze T., Kim K.S., Kawataki M. Clinical features of very-low-birthweight infants with congenital heart disease. Pediatr. Int. 2021; 63 (7): 806–12. DOI: 10.1111/ped.14562
- Taketoshi Yoshida, Akiko Hiraiwa, Keijiro Ibuki, Masami Makimoto, Satomi Inomata, Kentaro Tamura et al. Neurodevelopmental outcomes at 3 years for infants with congenital heart disease and very-low birthweight. Pediatr. Int. 2020; 62 (7): 797–803. DOI: 10.1111/ped.14160
- Rychik J., Goff D., McKay E., Mott A., Tian Z., Licht D.J. et al. Characterization of the placenta in the newborn with congenital heart disease: distinctions based on type of cardiac malformation. Pediatr. Cardiol. 2018; 39 (6): 1165–71. DOI: 10.1007/s00246-018-1876-x
- Masoller N., Sanz-Cortés M., Crispi F., Gómez O., Bennasar M., Egaña-Ugrinovic G. et al. Severity of fetal brain abnormalities in congenital heart disease in relation to the main expected pattern of in utero brain blood supply. Fetal Diagn. Ther. 2016; 39 (4): 269–78. DOI: 10.1159/000439527
- Binder J., Carta S., Carvalho J.S., Kalafat E., Khalil A., Thilaganathan B. Evidence for uteroplacental malperfusion in fetuses with major congenital heart defects. PLoS One. 2020; 15 (2): e0226741. DOI: 10.1371/journal.pone.0226741
- Leon R.L., Mir I.N., Herrera C.L., Sharma K., Spong C.Y., Twickler D.M. et al. Neuroplacentology in congenital heart disease: placental connections to neurodevelopmental outcomes. Pediatr. Res. 2022; 91 (4): 787–94. DOI: 10.1038/s41390-021-01521-7
- Matthiesen N.B., Henriksen T.B., Agergaard P., Gaynor J.W., Bach C.C., Hjortdal V.E., Østergaard J.R. Congenital heart defects and indices of placental and fetal growth in a nationwide study of 924 422 liveborn infants. Circulation. 2016; 134 (20): 1546–56. DOI: 10.1161/CIRCULATIONAHA.116.021793
- Linask K.K. The heart-placenta axis in the first month of pregnancy: induction and prevention of cardiovascular birth defects. J. Pregnancy. 2013; 2013: 320413. DOI: 10.1155/2013/320413
- Radhakrishna U., Albayrak S., Zafra R., Baraa A., Vishweswaraiah S., Veerappa A.M. et al. Placental epigenetics for evaluation of fetal congenital heart defects: Ventricular Septal Defect (VSD). PLoS ONE. 2019; 14 (3): e0200229. DOI: 10.1371/journal.pone.0200229
- Maslen C.L. Recent advances in placenta-heart interactions. Front. Physiol. 2018; 9: 735. DOI: 10.3389/fphys.2018. 00735
- Kelly C.J., Christiaens D., Batalle D., Makropoulos A., Cordero-Grande L., Steinweg J.K. et al. Abnormal microstructurChildren’s Heart and Vascular Diseases. 2022; 19 (2) DOI: 10.24022/1810-0686-2022-19-2-117-127 Original articles 126 al development of the cerebral cortex in neonates with congenital heart disease is associated with impaired cerebral oxygen delivery. JAHA. 2019; 8 (5): e009893. DOI: 10.1161/JAHA.118.009893
- Sun L., Macgowan C.K., Sled J.G., Shi-Joon Yoo, Manlhiot C., Porayette P. et al. Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation. 2015; 131 (15): 1313–23. DOI: 10.1161/CIRCULATIONAHA.114.013051
- Giussani D.A. The fetal brain sparing response to hypoxia: physiological mechanisms. J. Physiol. 2016; 594 (5): 1215–30. DOI: 10.1113/JP271099
- Vollgraff Heidweiller-Schreurs C.A., De Boer M.A., Heymans M.W., Schoonmade L.J., Bossuyt P.M., Mol B.W.J. et al. Prognostic accuracy of cerebroplacental ratio and middle cerebral artery Doppler for adverse perinatal outcome: systematic review and meta-analysis. Ultrasound. Obstet. Gynecol. 2018; 51 (3): 313–22. DOI: 10.1002/uog.18809
- Yarygina T.A., Gus A.I. Fetal growth restriction (retardation): everything the practitioner should know. Akusherstvo i Ginekologiya/Obstetrics and Gynecology. 2020; 12: 14–24 (in Russ.). DOI: 10.18565/aig.2020.12.14-24
- Insufficient fetal growth requiring the provision of medical care to the mother (fetal growth retardation): сlinical recommendations. Moscow: Ministry of Health of Russia; 2022 (in Russ.).
- Gordijn S.J., Beune I.M., Thilaganathan B., Papageorghiou A., Baschat A.A., Baker P.N. et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet. Gynecol. 2016; 48 (3): 333–9. DOI: 10.1002/uog.15884
- Lees C.C., Stampalija T., Baschat A., da Silva Costa F., Ferrazzi E., Figueras F. et al. ISUOG Practice Guidelines: diagnosis and management of small-for-gestational-age fetus and fetal growth restriction. Ultrasound Obstet. Gynecol. 2020; 56 (2): 298–312. DOI: 10.1002/uog.22134
- Jansen F.A., van Zwet E.W., Rijlaarsdam M.E., Pajkrt E., van Velzen C.L., Zuurveen H.R. et al. Head growth in fetuses with isolated congenital heart defects: lack of influence of aortic arch flow and ascending aorta oxygen saturation. Ultrasound Obstet. Gynecol. 2016; 48 (3): 357–64. DOI: 10.1002/uog.15980
- Mebius M.J., Clur S.A.B., Vink A.S., Pajkrt E., Kalteren W.S., Kooi E.M.W. et al. Growth patterns and cerebroplacental hemodynamics in fetuses with congenital heart disease. Ultrasound Obstet. Gynecol. 2019; 53 (6): 769–78. DOI: 10.1002/uog.19102
- Everwijn S.M.P., Namburete A.I.L., van Geloven N., Jansen F.A.R., Papageorghiou A.T., Noble A.J. et al. Cortical development in fetuses with congenital heart defects using an automated brain-age prediction algorithm. Acta Obstet. Gynecol. Scand. 2019; 98 (12): 1595–602. DOI: 10.1111/aogs.13687
- Ruiz A., Cruz-Lemini M., Masoller N., Sanz-Cortés M., Ferrer Q., Ribera I. et al. Longitudinal changes in fetal biometry and cerebroplacental hemodynamics in fetuses with congenital heart disease. Ultrasound Obstet. Gynecol. 2017; 49 (3): 379–86. DOI: 10.1002/uog.15970
- Van Nisselrooij A.E.L., Jansen F.A.R., van Geloven N., Linskens I.H., Pajkrt E., Clur S.A. et al. Impact of extracardiac pathology on head growth in fetuses with congenital heart defect. Ultrasound Obstet. Gynecol. 2020; 55 (2): 217–25. DOI: 10.1002/uog.20260
- Masoller N., Sanz-Corté S.M, Crispi F., Gómez O., Bennasar M., Egaña-Ugrinovic G. et al. Mid-gestation brain Doppler and head biometry in fetuses with congenital heart disease predict abnormal brain development at birth. Ultrasound Obstet. Gynecol. 2016; 47 (1): 65–73. DOI: 10.1002/uog.14919
- Escobar-Diaz M.C., Pérez-Cruz M., Arráez M., Cascant-Vilaplana M.-M., Albiach-Delgado A., Kuligowski J. et al. Brain oxygen perfusion and oxidative stress biomarkers in fetuses with congenital heart disease-a retrospective, case-control pilot study. Antioxidants (Basel). 2022; 11 (2): 299. DOI: 10.3390/antiox11020299
- Marzoeva O.V., Bespalova E.D., Gasanova R.M., Bartagova M.N. Changes in blood flow in the middle cerebral artery in fetuses with hypoplastic left heart syndrome. Questions of Practical Pediatrics. 2014; 9 (3): 33–7 (in Russ.).
- Papageorghiou A.T., Kennedy S.H., Salomon L.J., Ohuma E.O., Cheikh Ismail L., Barros F.C. et al. International standards for early fetal size and pregnancy dating based on ultrasound measurement of crown–rump length in the first trimester of pregnancy. Ultrasound Obstet. Gynecol. 2014; 44 (6): 641–8. DOI: 10.1002/uog.13448
- Salomon L.J., Alfirevic Z., Da Silva Costa F., Deter R.L., Figueras F., Ghi T. et al. ISUOG Practice Guidelines: ultrasound assessment of fetal biometry and growth. Ultrasound Obstet. Gynecol. 2019; 53 (6): 715–23. DOI: 10.1002/uog. 20272
- Salomon L.J., Alfirevic Z., Berghella V., Bilardo C., HernandezAndrade E., Johnsen S.L. et al. & ISUOG Clinical Standards Committee. Practice guidelines for performance of the routine mid-trimester fetal ultrasound scan. Ultrasound Obstet. Gynecol. 2011; 37 (1): 116–26. DOI: 10.1002/uog.8831
- Bhide A., Acharya G., Bilardo C.M., Brezinka C., Cafici D., Hernandez-Andrade E. et al. ISUOG practice guidelines: use of Doppler ultrasonography in obstetrics. Ultrasound Obstet. Gynecol. 2013; 41 (2): 233–39. DOI: 10.1002/uog.12371
- Papageorghiou A.T., Ohuma E.O., Altman D.G., Todros T., Cheikh Ismail L., Lambert A. et al. & International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st) International standards for fetal growth based on serial ultrasound measurements: the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project. Lancet (London, England). 2014; 384 (9946): 869–79. DOI: 10.1016/S0140-6736(14)61490-2
- Ciobanu A., Wright A., Syngelaki A., Wright D., Akolekar R., Nicolaides K.H. Fetal Medicine Foundation reference ranges for umbilical artery and middle cerebral artery pulsatility index and cerebroplacental ratio. Ultrasound Obstet. Gynecol. 2019; 53 (4): 465–72. DOI: 10.1002/uog.20157
- Leon R.L., Ortigoza E.B., Ali N., Angelis D., Wolovits J.S., Chalak L.F. Cerebral blood flow monitoring in high-risk fetal and neonatal populations. Front. Pediatr. 2022; 9: 748345. DOI: 10.3389/fped.2021.748345
- Marino B.S., Lipkin P.H., Newburger J.W., Peacock G., Gerdes M., Gaynor J.W. et al.; American Heart Association Congenital Heart Defects Committee, Council on Cardiovascular Disease in the Young, Council on Cardiovascular Nursing, and Stroke Council. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association. Circulation. 2012; 126 (9): 1143–72. DOI: 10.1161/CIR.0b013e318265ee8a
- Rh-isoimmunization. Hemolytic disease of the fetus: clinical recommendations. Moscow: Ministry of Health of Russia; 2020: 38 (in Russ.).
- Multiple pregnancy: Clinical guidelines. Moscow: Ministry of Health of Russia; 2021: 74 (in Russ.).
- Dantas A.M.A., Palmieri A.B.S., Vieira M.R., Souza M.L.R., Silva J.C. Doppler ultrasonographic assessment of fetal middle cerebral artery peak systolic velocity in gestational diabetes mellitus. Int. J. Gynaecol. Obstet. 2019; 144 (2): 174–9. DOI: 10.1002/ijgo.12723
- Fatihoglu E., Aydin S., Karavas E., Kantarci M. Gestational diabetes mellitus and early hemodynamic changes in fetus. J. Med. Ultrasound. 2021; 29 (4): 270–6. DOI: 10.4103/JMU.JMU_161_20
- Mok T., Pereira J.P. Jr, Sobhani N.C., Cardozo R.F., Valle H.A., Dutra B. et al. Middle cerebral artery dopplers and abnormal neonatal outcomes among pregnant women with Zika virus infection. Am. J. Perinatol. 2021; 39 (6): 577–83. DOI: 10.1055/s-0041-1740057
- Mari G., Hanif F., Kruger M., Cosmi E., Santolaya-Forgas J. and Treadwell M.C. Middle cerebral artery peak systolic velocity: a new Doppler parameter in the assessment of growthrestricted fetuses. Ultrasound Obstet. Gynecol. 2007; 29: 310–6. DOI: 10.1002/uog.3953
- Ozturk E., Gokalp S., Tanidir I.C., Cilsal E., Ergun S., Haydin S., Guzeltas A. Effect of aortic arch surgery in newborns' cerebral and gastrointestinal hemodynamics: evaluation by Doppler ultrasonography. J. Matern. Fetal. Neonatal. Med. 2021; 1–7. DOI: 10.1080/14767058.2021.1909558
- Nohuz E., Rivière O., Coste K., Vendittelli F. Prenatal identification of small-for-gestational age and risk of neonatal morbidity and stillbirth. Ultrasound Obstet. Gynecol. 2020; 55 (5): 621–8. DOI: 10.1002/uog.20282 45. Ego A., Monier I., Skaare K., Zeitlin J. Antenatal detection of fetal growth restriction and stillbirth risk: a population – based case – control study. Ultrasound Obstet. Gynecol. 2020; 55 (5): 613–20. DOI: 10.1002/uog.20414
- Meler E., Mazarico E., Eixarch E., Gonzalez A., Peguero A., Martinez J. et al. Ten-year experience of protocol-based management of small-for-gestational-age fetuses: perinatal outcome in late-pregnancy cases diagnosed after 32 weeks. Ultrasound Obstet. Gynecol. 2021; 57 (1): 62–9. DOI: 10.1002/uog.23537
- Cohen J.A., Rychik J., Savla J.J. The placenta as the window to congenital heart disease. Curr. Opin. Cardiol. 2021; 36 (1): 56–60. DOI: 10.1097/HCO.0000000000000816
About the authors
- Tamara A. Yarygina, Cand. Med. Sci., Ultrasound Doctor; ORCID
- Rena M. Gasanova, Dr. Med. Sci., Research Associate, Cardiologist; ORCID
- Elena I. Leonova, Ultrasound Doctor; ORCID
- Ol’ga V. Marzoeva, Cand. Med. Sci., Ultrasound Doctor; ORCID
- Elena V. Sypchenko, Cand. Med. Sci., Ultrasound Doctor; ORCID
- Aleksandr I. Gus, Dr. Med. Sci., Professor, Chief Researcher; ORCID