Abstract
Purpose of the study. Assessment of the possibilities of prenatal detection of factors associated with impaired psychomotor development in children with CHD under the age of 16 months.
Material and methods. Forty-five children with prenatally diagnosed CHD were assessed for psychomotor development using the Russian version of the Kent Infant Development Scale. For cases with delayed and normal development of children, a retrospective analysis of the frequency of detection of 5 groups of factors potentially associated with subsequent impaired of the child's development was carried out: clinical, epidemiological and social family factors; fetal factors, including the type of CHD, sex and fetal syndromic pathology; antenatal ultrasonic fetometric and dopplerographic parameters; as well as intra- and neonatal factors, including prematurity, hypoxia at birth.
Results. Slow and normal rates of child development were noted in 13 (28.9%) and 32 (71.1%) cases, respectively. With delayed psychomotor development in the antenatal period, there was a significantly greater number of cases of a decrease in cerebral fetometric parameters: head circumference, biparietal diameter (BPR) and transverse cerebellar diameter (TCD), pulsation index in the middle cerebral artery (PI MCA) and the cerebroplacental ratio (CPR) below the 5th centile (p<0.05), as well as cases with established genetic pathology of the fetus (p = 0.001). All other parameters, including types of congenital heart disease, had no difference in frequency between groups (p>0.05). The odds ratio for a subsequent developmental disorder was 9.4 (1.52–57.7) with a fetal head circumference <10th percentile; 12.9 (2.1–77.7) with PI MCA or CPR < 5th percentile; 19.4 (2.0–190.1) with BPR or TCD < 10th percentile; 25.6 (2.7–257.3) with established syndromic pathology of the fetus.
Conclusion. Antenatal detection of cases with a high risk of subsequent early impaired psychomotor development of a child with CHD can be achieved by mandatory inclusion in the examination protocols of fetuses with cardiac pathology genetic diagnosis, as well as the assessment of the cerebral fetometric and Doppler parameters.
References
- Birth defects surveillance: a manual for programme managers, second edition. Geneva: World Health Organization; 2020; 116. Licence: CC BY-NC-SA 3.0 IGO. Available from: https://www.who.int/publications-detail/9789241548724 (дата обращения 15.06.2022)
- Heron M. Deaths: Leading Causes for 2017. Natl. Vital Stat. Rep. 2019; 68 (6): 1–77.
- HEALTH IN RUSSIA. 2021. Statistical compendium. Moscow. 2021 [Electronic resource]. Moscow: Federal State Statistics Детские болезни сердца и сосудов. 2022; 19 (4) DOI: 10.24022/1810-0686-2022-19-4-285-296 Оригинальные статьи 293 Service (Rosstat) 2021. https://rosstat.gov.ru/storage/mediabank/Zdravoohran-2021.pdf (Accessed 15.06.2022) (in Russ.).
- Collection of statistical materials on diseases of the circulatory system. M.: Federal State Budgetary Institution Central Research Institute of Health Organization and Information of the Ministry of Health of the Russian Federation, 2020. Access mode: http://www.demoscope.ru/weekly/2021/0899/biblio04.php (Accessed 08/14/2022) (in Russ.).
- Glinianaia S.V., McLean A., Moffat M., Shenfine R., Armaroli A., Rankin J. Academic achievement and needs of schoolaged children born with selected congenital anomalies: A systematic review and meta-analysis. Birth. Defects Research. 2021; 113 (20): 1431–62. DOI: 10.1002/bdr2.1961
- Atmashkin A.A., Kim A.I., Grigor'yants T.R., Rogova T.V., Kurganov R.M., Popov A.E. 15-year experience of surgical treatment total anomalous pulmonary venous connections. Children's Heart and Vascular Diseases. 2021; 18 (3): 176–83 (in Russ.). DOI: 10.24022/1810-0686-2021-18-3-176-183
- Golukhova E.Z. Report on the scientific and clinical activity of Bakoulev National Medical Research Center for Cardiovascular Surgery for 2021 and development prospects. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2022; 23 (Special Issue): 12–111 (in Russ.). DOI: 10.24022/1810- 0694-2022-23S
- Sood E., Jacobs J.P., Marino B.S. The Cardiac Neurodevelopmental Outcome Collaborative: a new community improving outcomes for individuals with congenital heart disease. Cardiol. Young. 2020; 30 (11): 1595–6. DOI: 10.1017/S1047951120003509
- Marino B.S., Lipkin P.H., Newburger J.W., Peacock G., Gerdes M., Gaynor J.W. et al. American Heart Association Congenital Heart Defects Committee, Council on cardiovascular disease in the young, Council on cardiovascular nursing, and stroke Council. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association. Circulation. 2012; 126 (9): 1143–72. DOI: 10.1161/CIR.0b013e318265ee8a
- Cocomello L., Dimagli A., Biglino G., Cornish R., Caputo M., Lawlor D.A. Educational attainment in patients with congenital heart disease: a comprehensive systematic review and meta-analysis. BMC cardiovascular disorders. 2021; 21 (1): 1–20. DOI: 10.1186/s12872-021-02349-z
- Matos S.M., Sarmento S., Moreira S., Pereira M.M., Quintas J., Peixoto B. et al. Neurocognitive performance in patients with CHD. Congenit. Heart Dis. 2014; 9: 373–81. DOI: 10.1111/chd.12152
- Oster M.E., Watkins S., Hill K.D., Knight J.H., Meyer R.E. Academic outcomes in children with congenital heart defects: A population-based cohort study. Circulation: Cardiovascular Quality and Outcomes. 2017; 10, e003074. DOI: 10.1161/CIRCOUTCOMES.116.003 Children’s Heart and Vascular Diseases. 2022; 19 (4) DOI: 10.24022/1810-0686-2022-19-4-285-296 Original articles 294
- Engenova M.S., Shvedunova V.N., Zavarina A.Yu., Putyato N.A., Kul'geyko E.A., Tokaeva Z.K. et al. Psychological aspects of rehabilitation of children after surgical correction of congenital heart defects in the early postoperative period. Children's Heart and Vascular Diseases. 2021; 18 (2): 116–22 (in Russ.). DOI: 10.24022/1810-0686-2021-18-2- 116-122
- Tripathi T., Harrison T.M., Simsic J.M., Cabral T.I., Heathcock J.C. Screening and Evaluation of Neurodevelopmental Impairments in Infants Under 6 Months of Age with congenital heart disease. Pediatr. Cardiol. 2022; 43: 489–96. DOI: 10.1007/s00246-021-02745-4
- Hirsch J.C., Jacobs M.L., Andropoulos D., Austin E.H., Jacobs J.P., Licht D.J. et al. Protecting the infant brain during cardiac surgery: a systematic review. Ann. Thorac. Surg. 2012; 94 (4): 1365–73. DOI: 10.1016/j.athoracsur.2012.05.135
- Sakamoto T. Current status of brain protection during surgery for congenital cardiac defect. Gen. Thorac. Cardiovasc Surg. 2016; 64 (2): 72–81. DOI: 10.1007/s11748-015-0606-z
- Teberdieva S.O., Ushakova L.V., Safanovskaya A.A., Burov A.A., Podurovskaya Yu.L., Degtyarev D.N. Complex assessment of factors that adversely affect the functional state of the brain of newborn children with congenital malformations of internal organs. Neonatology: News, Opinions, Training. 2017; 2: 59–67 (in Russ.).
- Bolduc M.E., Lambert H., Ganeshamoorthy S., BrossardRacine M. Structural brain abnormalities in adolescents and young adults with congenital heart defect: A systematic review. Developmental Medicine and Child Neurology. 2018; 60: 1209–24. DOI: 10.1111/dmcn.13975
- Marzoeva O.V., Sypchenko E.V., Leonova E.I., Gasanova R.M., Yarygina T.A. Influence of congenital heart disease on the developing fetal brain. Children's Heart and Vascular Diseases. 2022; 19 (1): 34–41 (in Russ.). DOI: 10.24022/1810-0686-2022-19-1-34-41
- Yarygina T.A., Gasanova R.M., Leonova E.I., Marzoeva O.V., Sypchenko E.V., Talolina O.V., Gus A.I. The introduction of multiplanar neurosonography in the complex examination of fetuses with congenital heart defects: the first Russian experience. The Bulletin of Bakoulev Center. Cardiovascular Diseases. 2021; 22 (2): 231–8 (in Russ.). DOI: 10.24022/1810-0694-2021-22-2-231-238
- Gaynor J.W. The encephalopathy of congenital heart disease. J. Thorac. Cardiovasc. Surg. 2014; 148 (5): 1790–1. DOI: 10.1016/j.jtcvs.2014.09.061
- Matos S.M., Sarmento S., Moreira S., Pereira M.M., Quintas J., Peixoto B. et al. Neurocognitive Performance in Patients with CHD. Congenit. Heart Dis. 2014; 9: 373–81. DOI: 10.1111/chd.12152
- Hiraiwa A., Ibuki K., Tanaka T., Hirono K., Miya K., Yoshimura N., Ichida F. Toddler Neurodevelopmental outcomes are associated with school-age IQ in children with single ventricle physiology. Semin. Thorac. Cardiovasc. Surg. 2020; 32 (2): 302–10. DOI: 10.1053/j.semtcvs.2019.10.017
- Lawley C.M., Winlaw D.S., Sholler G.F., Martin A., Badawi N., Walker K. et al. School-age developmental and educational outcomes following cardiac procedures in the first year of life: a population-based record linkage study. Pediatr. Cardiol. 2019; 40 (3): 570–9. DOI: 10.1007/s00246-018-2029-y
- Sakaeva D.R. Neuropsychic profile of young children with hypoxic-ischemic disorder of the central nervous system and congenital heart defects. Bulletin of the Medical Dental Institute. 2013; 1: 31–5 (in Russ.).
- Sakaeva D.R., Khairetdinova T.B., Tsypina L.G. Risk factors and prediction of neuropsychic developmental delay in children with hypoxic-ischemic lesions of the central nervous system and congenital heart defects. Perm Medical Journal. 2013; 30 (1): 34–9 (in Russ.).
- Khairetdinova T.B., Khabibullina A.R., Shaibakova L.R., Onegov D.V., Khabibullin I.M. Neuropsychic and physical development of young children after surgical correction of congenital septal heart defects. Pediatrics. Journal them. G.N. Spe-ransky. 2015; 94 (2): 23–6 (in Russ.).
- Saperova E.V., Vakhlova I.V. Comprehensive assessment of the health of children with congenital heart defects who underwent surgery in the first year of life. Bulletin of the Ural State Medical University. 2019; 3–4: 87–92 (in Russ.).
- Bazylev V.V., Chernogrivov I.E., Gamzaev A.B., Nazarova I.S., Rybakova T.V., Chernogrivov A.E. Assessment of risk factors affecting the neuropsychological development of young children after surgical correction of congenital heart disease. Children's Heart and Vascular Diseases. 2020; 17 (4): 261–8 (in Russ.). DOI: 10.24022/1810-0686-2020-17-4-261-268
- Morrow-Tlucak M., Ernhart C.B., Liddle C.L. The Kent infant development scale: concurrent and predictive validity of a modified administration. Psychological Reports. 1987; 60 (3): 887–94. DOI: 10.2466/pr0.1987.60.3.887
- Diagnostic methodology "Comprehensive assessment of the development of children aged 2 months to 3 years 6 months" /ANO DPO "St. Petersburg Institute for Early Intervention" – Access mode: https://eii.ru/infoteka/programmakid-rcdi-dlya-tochnoy-otsenki-razvitiya-rebenka/ (accessed 08/14/2022) (in Russ.).
- Papageorghiou A.T., Ohuma E.O., Altman D., Todros T., Cheikh Ismail L., Lambert A. et al. International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st) International standards for fetal growth based on serial ultrasound measurements: the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project. Lancet (London, England). 2014; 384 (9946): 869–79. DOI: 10.1016/S0140-6736(14)61490-2
- Rodriguez-Sibaja M.J., Villar J., Ohuma E.O., Napolitano R., Heyl S., Carvalho M. et al. Fetal cerebellar growth and Sylvian fissure maturation: International standards from the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project. Ultrasound Obstet. Gynecol. 2020. DOI: 10.1002/uog.22017
- Gómez O., Figueras F., Fernández S., Bennasar M., Martínez J.M., Puerto B., Gratacós E. Reference ranges for uterine artery mean pulsatility index at 11-41 weeks of gestation. Ultrasound Obstet. Gynecol. 2008; 32 (2): 128–32. DOI: 10.1002/uog.5315
- Ciobanu A., Wright A., Syngelaki A., Wright D., Akolekar R., Nicolaides K.H. Fetal Medicine Foundation reference ranges for umbilical artery and middle cerebral artery pulsatility index and cerebroplacental ratio. Ultrasound Obstet. Gynecol. 2019; 53 (4): 465–72. DOI: 10.1002/uog.20157
- Mari G., Deter R.L., Carpenter R.L., Rahman F., Zimmerman R., Moise K.J. Jr et al. Noninvasive diagnosis by Doppler ultrasonography of fetal anemia due to maternal red-cell alloimmunization. Collaborative Group for Doppler Assessment of the Blood Velocity in Anemic Fetuses. N. Engl. J. Med. 2000; 342 (1): 9–14. DOI: 10.1056/NEJM200001063420102
- Verrall C.E., Blue G.M., Loughran-Fowlds A., Kasparian N., Gecz J., Walker K. et al. 'Big issues' in neurodevelopment for children and adults with congenital heart disease. Open Heart. 2019; 6 (2): e000998. DOI: 10.1136/openhrt-2018-000998
- Goldberg C.S. Commentary: No child left behind: toddler evaluations correlate with school age evaluations but still plan early intervention for all. Semin. Thorac. Cardiovasc. Surg. 2020; 32 (2): 311–2. DOI: 10.1053/j.semtcvs.2020.02.001
- Ilardi D., Sanz J.H., Cassidy A.R., Sananes R., Rollins C.K., Ullman Shade C. et al. Neurodevelopmental evaluation for school-agechildren with congenital heart disease: recommendations from the Cardiac Neurodevelopmental Outcome Collaborative. Cardiology in the Young. 2020; 30: 1623–36. DOI: 10.1017/S1047951120003546
- Hashimoto K., Sakamoto N., Takekoh M., Ikeda N., Kato K., Honda M. et al. Validity of the family-rated kinder infant development scale (KIDS) for children. Pediatrics & Therapeutics. 2013; 3: 1–5. DOI: 10.4172/2161-0665.1000153
- Cunningham C., Reuter J., Hack M. Validity of the Kent Infant Development Scale (Kids) In Very Low Birthweight (VLBW) infants. Pediatric Research. 1984; 18 (4): 102.
- Neiman G.S., Savage H.E. Development of infants and toddlers with clefts from birth to three years of age. The Cleft Palate-Craniofacial Journal. 1997; 34 (3): 218–25. DOI: 10.1597/1545-1569_1997_034_0218_doiatw_2.3.co_2
- Galaguzova Y.N., Dunganova D.E. Experience of using KID and RCDI Screening Scales for the complex evaluation of an early-aged child development in conditions of digitalization. In International Scientific Conference “Digitalization of Educa-tion: History, Trends and Prospects” (DETP 2020). 2020; Atlantis Press: 182–6. DOI: 10.2991/assehr.k.200509.033
- Letter from the Ministry of Education and Science of Russia dated May 23, 2016 N VK-1074/07 On improving the activities of psychological, medical and pedagogical commissions. Moscow; 2016. Access mode //sudact.ru/law/pismo-minobrnauki-rossii-ot-23052016-n-vk-107407/(accessed 18.08.2022) (in Russ.).
- Chistovich I.A., Reiter Zh., Shapiro Ya.N. Guidelines for assessing the development of infants based on the Russified KID scale. Second edition. St. Petersburg, 2019 (in Russ.).
- Marelli A.J., Ionescu-Ittu R., Mackie A.S., Guo L., Dendukuri N., Kaouache M. Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation. 2014; 130 (9): 749–56. DOI: 10.1161/CIRCULATIONAHA. 113.008396
- Tyagi M., Fteropoulli T., Hurt C.S., Hirani S.P., Rixon L., Davies A. et al. Cognitive dysfunction in adult CHD with different structural complexity. Cardiol. Young. 2017; 27 (5): 851–9. DOI: 10.1017/S1047951116001396
- American College of Obstetricians and Gynecologists Committee on Genetics. Committee Opinion No. 581: the use of chromosomal microarray analysis in prenatal diagnosis. Obstet. Gynecol. 2013; 122 (6): 1374–7. DOI: 10.1097/01.AOG.0000438962.16108.d1
- American College of Obstetricians and Gynecologists. ACOG Practice Bulletin No. 88, December 2007. Invasive prenatal testing for aneuploidy. Obstet. Gynecol. 2007; 110 (6): 1459–67. DOI: 10.1097/01.AOG.0000291570.63450.44
- Practice Bulletin No. 162: Prenatal Diagnostic Testing for Genetic Disorders. Obstet. Gynecol. 2016; 127 (5): e108–e122. DOI: 10.1097/AOG.0000000000001405
- Wu X.L., Li R., Fu F., Pan M., Han J., Yang X. et al. Chromosome microarray analysis in the investigation of children with congenital heart disease. BMC Pediatr. 2017; 17 (1): 117. DOI: 10.1186/s12887-017-0863-3
- Yarygina T.A., Gasanova R.M., Leonova E.I., Marzoeva O.V., Sypchenko E.V., Gus A.I. Prenatal detection of somatic pathology complicating the condition of newborns with congenital heart defects. Children's Heart and Vascular Diseases. 2021; 18 (4): 269–80 (in Russ.). DOI: 10.24022/1810- 0686-2021-18-4-269-280
- Yarygina T.A., Gasanova R.M., Bolshakova A.S., Marzoeva O.V., Sypchenko E.V., Gus A.I. Cardiac pathology in cases of monozygotic twins with chromosome 22 deletion syndrome Children’s Heart and Vascular Diseases. 2022; 19 (4) DOI: 10.24022/1810-0686-2022-19-4-285-296 Original articles 296 (22q11DS). Obstetrics and Gynecology. 2022; 6: 140–51 (in Russ.). DOI: 10.18565/aig.2022.6.140-151
- Owen M.J., Doherty J.L. What can we learn from the high rates of schizophrenia in people with 22q11. 2 deletion syndrome? World Psychiatry. 2016; 15 (1): 23–5. DOI: 10.1002/wps.20274
- Tang S.X., Gur R.E. Longitudinal perspectives on the psychosis spectrum in 22q11.2 deletion syndrome. Am. J. Med. Genet. A. 2018; 176 (10): 2192–202. DOI: 10.1002/ajmg.a.38500
- Benbouchta Y., De Leeuw N., Amasdl S., Sbiti A., Smeets D., Sadki K., Sefiani A. 15q26 deletion in a patient with congenital heart defect, growth restriction and intellectual disability: case report and literature review. Ital. J. Pediatr. 2021; 47 (1): 188. DOI: 10.1186/s13052-021-01121-5
- Kleefstra T, de Leeuw N. Kleefstra Syndrome. 2010 Oct 5 [updated 2019 Mar 21]. In: Adam M.P., Everman D.B., Mirzaa G.M., Pagon R.A., Wallace S.E., Bean L.J.H. et al. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2022.
- Jansen F.A., van Zwet E.W., Rijlaarsdam M.E., Pajkrt E., van Velzen C.L., Zuurveen H.R. et al. Head growth in fetuses with isolated congenital heart defects: lack of influence of aortic arch flow and ascending aorta oxygen saturation. Ultrasound Obstet. Gynecol. 2016; 48 (3): 357–64. DOI: 10.1002/uog.15980
- Mebius M.J., Clur S.A.B., Vink A.S., Pajkrt E., Kalteren W.S., Kooi E.M.W. et al. Growth patterns and cerebroplacental hemodynamics in fetuses with congenital heart disease. Ultrasound Obstet. Gynecol. 2019; 53 (6): 769–78. DOI: 10.1002/uog.19102
- Ruiz A., Cruz-Lemini M., Masoller N., Sanz-Cortés M., Ferrer Q., Ribera I. et al. Longitudinal changes in fetal biometry and cerebroplacental hemodynamics in fetuses with congenital heart disease. Ultrasound Obstet. Gynecol. 2017; 49 (3): 379–86. DOI: 10.1002/uog.15970
- Binder J., Carta S., Carvalho J.S., Kalafat E., Khalil A., Thilaganathan B. Evidence for uteroplacental malperfusion in fetuses with major congenital heart defects. PLoS One. 2020; 15 (2): e0226741. DOI: 10.1371/journal.pone.0226741
- Cohen E., Baerts W., van Bel F. Brain-sparing in intrauterine growth restriction: considerations for the neonatologist. Neonatology. 2015; 108 (4): 269–76. DOI: 10.1159/000438451
- Marzoeva O.V., Bespalova E.D., Gasanova R.M., Bartagova M.N. Changes in blood flow in the middle cerebral artery in fetuses with hypoplastic left heart syndrome. Questions of practical pediatrics. 2014; 9 (3): 33–7 (in Russ.).
- Strizhakov A.N., Popova N.G., Ignatko I.V. Echographic and Doppler ultrasound prognostic markers of lesions of the central nervous system in premature newborns. Gynecology, Obstetrics and Perinatology. 2018; 17 (5): 56–62 (in Russ.). DOI: 10.20953/1726-1678-2018-5-56-62
- Sood E., Lisanti A.J., Woolf-King S.E., Wray J., Kasparian N., Jackson E. et al. Parent mental health and family functioning following diagnosis of CHD: a research agenda and recommendations from the Cardiac Neurodevelopmental Outcome Collaborative. Cardiol. Young. 2021; 31 (6): 900–14. DOI: 10.1017/S1047951121002134
About the authors
- Tamara A. Yarygina, Cand. Med. Sci., Specialist of Ultrasound Diagnostics, Researcher; ORCID
- Elena I. Leonova, Specialist of Ultrasound Diagnostics; ORCID
- Rena M. Gasanova, Dr. Med. Sci., Head of the Perinatal Cardiology Center; ORCID
- Ol'ga V. Marzoeva, Cand. Med. Sci., Doctor of Ultrasound Diagnostics, Researcher; ORCID
- Elena V. Sypchenko, Cand. Med. Sci., Doctor of Ultrasound Diagnostics; ORCID
- Aleksandr I. Gus, Dr. Med. Sci., Professor; ORCID