Abstract
Mutations in the genes of the RAS/MAPK pathway form a large group of clinically and genetically overlapping syndromes, which include diseases of the cardiovascular system. The spectrum of cardiovascular abnormalities includes different congenital heart diseases (CHD), cardiomyopathies (CM) mostly with a hypertrophic phenotype, and heart rhythm disorders. About 20% of all cases in children with hypertrophic CM are due to RASopathies, 42% of which are detected in children during their first year of life.
Objective – the research aims to determine the molecular genetic causes and clinical outcomes of hypertrophic CM in children with RASopathies.
Material and methods. 64 children, aged from 1 month to 17 years old, with different varieties of RASopathies were included into the research. All patients underwent examination and treatment from 2012 to 2021 in National Medical Research Center for Children's Health Federal state autonomous institution of the Russian Federation Ministry of Health.
Results. Hypertrophic CM as a part of RASopathy was diagnosed in 46 cases (72%). The disease was caused by nucleotide variants in the genes PTPN11 (n = 16), RAF1 (n = 13), RIT1 (n = 8), BRAF (n = 3), LZTR1 (n = 2), SOS1 (n = 2), SOS2 (n = 1) and SHOC2 (n = 1). The obstructive form of hypertrophic CM was detected in 32 children. The average age when hypertrophic CM was diagnosed is 13,5 months, and the average age when the gene syndrome was verified is 57,4 months. Six new nucleotide variants were identified in the genes of the RAS/MAPK pathway. The most common variant in patients with hypertrophic CM is c.770C>T, p.S257L missense mutation in exon 7 of the RAF1 gene. Septal myectomy was performed in 5 patients with variants in the PTPN11 gene, in 3 cases with RAF1 gene mutation, in 1 case with SOS1 gene mutation, and in 2 patients with biallelic mutations in the LZTR1 gene.
Conclusion. The presence of hypertrophic CM significantly affects the prognosis of this group of patients and often requires early surgical intervention due to the large number of obstructive CM forms and the high occurrence of concomitant CHD.
References
- Wright E.M., Kerr B. RAS-MAPK pathway disorders: important causes of congenital heart disease, feeding difficulties, developmental delay and short stature. Arch. Dis. Child. 2010; 95 (9): 724–30. DOI: 10.1136/adc.2009.160069
- Noonan J.A. Hypertelorism with Turner phenotype. A new syndrome with associated congenital heart disease. Am. J. Dis. Child. 1968; 116 (4): 373–80. DOI: 10.1001/archpedi.1968.02100020377005
- Mendez H.M., Opitz J.M. Noonan syndrome: a review. Am. J. Med. Genet. 1985; 21 (3): 493–506. DOI: 10.1002/ajmg. 1320210312
- Kruszka P., Porras A.R., Addissie Y.A., Moresco A., Medrano S., Mok G.T.K. Noonan syndrome in diverse populations. Am. J. Med. Genet A. 2017; 173 (9): 2323–34. DOI: 10.1002/ajmg.a.38362
- Tartaglia M., Gelb B.D., Zenker M. Noonan syndrome and clinically related disorders. Best. Pract. Res. Clin. Endocrinol. Metab. 2011; 25 (1): 161–79. DOI: 10.1016/j.beem.2010.09.002
- Ueda K., Yaoita M., Niihori T., Aoki Y., Okamoto N. Craniosynostosis in patients with RASopathies: Accumulating clinical evidence for expanding the phenotype. Am. J. Med. Genet. A. 2017; 173 (9): 2346–52. DOI: 10.1002/ajmg.a.38337
- Roelofs R.L., Janssen N., Wingbermühle E., Kessels R.P., Egger J.I. Intellectual development in Noonan syndrome: a longitudinal study. Brain Behav. 2016; 6 (7): e00479. DOI: 10.1002/brb3.479
- Parada L.F., Tabin C.J., Shih C., Weinberg R.A., Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature. 1982; 297 (5866): 474–8. DOI: 10.1038/297474a0
- Norrish G., Field E., Mcleod K., Ilina M., Stuart G., Bhole V. et al. Clinical presentation and survival of childhood hypertrophic cardiomyopathy: a retrospective study in United Kingdom. Eur. Heart J. 2019; 40 (12): 986–93. DOI: 10.1093/eurheartj/ehy798
- Chistiakov D.A., Savost'anov K.V., Kuzenkova L.M., Gevorkyan A.K., Pushkov A.A., Nikitin A.G. et al. Molecular characteristics of patients with glycosaminoglycan storage disorders in Russia. Clin. Chim. Acta. 2014; 436: 112–20. DOI: 10.1016/j.cca.2014.05.010
- Baranov A.A., Namasova-Baranova L.S., Borovik T.E., Bushueva T.V., Vishneva E.A., Globa O.V. et al. Methylmalonic aciduria in children: clinical recommendations. Pediatric. Pharmacology. 2017; 14 (4): 258–71 (in Russ.). DOI: 10.15690/pf.v14i4.1757
- Kuzenkova L.М., Namazova-Baranova L.S., Podkletnova Т.V., Gevorkyan А.K., Vashakmadze N.D., Savostyanov K.V. et al. Fabry Disease: symptoms in children and teenagers. Current Pediatrics. 2015; 14 (3): 341–8 (in Russ.). DOI: 10.15690/vsp.v14i3.1369
- Zhurkova N.V., Vashakmadze N.D., Zimina E.P., Sukhanova N.V., Kotalevskaya Yu.Yu., Pushkov A.A. et al. GM-1-gangliosidosis, type I in pediatrician's practice. Pediatrics and children's surgery. 2020; 2 (100): 44–51 (in Russ.).
- Gandaeva L.A., Basargina E.N., Zharova O.P., Zubkova K.A., Pushkov A.A., Kaverina V.G. et al. Danon disease in children: view of a pediatric cardiologist. Russian Bulletin of Perinatology and Pediatrics. 2021; 66 (3): 110–7 (in Russ.). DOI: 10.21508/1027-4065-2021-66-3-110-117
- Zhurkova N.V., Vashakmadze N.D., Savost'anov K.V., Pushkov A.A., Nesterov A.M., Namazova-Baranova L.S. Mitochondrial complex V (ATP-synthase) deficiency nuclear type 2, caused by mutation in the TMEM70 gene: the first case in Russia. Pediatric pharmacology. 2018; 15 (2): 175–8 (in Russ.). DOI: 10.15690/pf.v15i2.1874
- Kulebina E.A., Surkov A.N., Potapov A.S., Anushenko A.O., Movsisyan G.B., Bessonov E.E., et al. Diagnosis and treatment of the long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHAD) in a 8 months old infant: a case report. Russian Pediatric Journal. 2020; 23 (4): 274–9 (in Russ.). DOI: 10.18821/1560-9561-2020-23-4-274-279
- Polyakova S.V., Savostyanov K.V., Pushkov A.A. Hereditary tyrosinemia type 1: what pediatricians need to know. Paediatrician practice. 2014; 1: 4–16 (in Russ.).
- Gelb B.D., Roberts A.E., Tartaglia M. Cardiomyopathies in Noonan syndrome and the other RASopathies. Prog. Pediatr. Cardiol. 2015; 39 (1): 13–9. DOI: 10.1016/j.ppedcard.2015.01.002
- Nishikawa T., Ishiyama S., Shimojo T., Takeda K., Kasajima T., Momma K. Hypertrophic cardiomyopathy in Noonan syndrome. Acta Paediatr. Jpn. 1996; 38 (1): 91–8. DOI: 10.1111/j.1442-200x.1996.tb03445.x
- Hickey E.J., Mehta R., Elmi M., Asoh K., McCrindle B.W., Williams W.G. et al. Survival implications: hypertrophic cardiomyopathy in Noonan syndrome. Congenit. Heart Dis. 2011; 6 (1): 41–7. DOI: 10.1111/j.1747-0803.2010.00465.x
- Wilkinson J.D., Lowe A.M., Salbert B.A., Sleeper L.A., Colan S.D., Cox G.F. et al. Outcomes in children with Noonan syndrome and hypertrophic cardiomyopathy: a study from the Pediatric Cardiomyopathy Registry. Am. Heart J. 2012; 164 (3): 442–8. DOI: 10.1016/j.ahj.2012.04.018
- Ramond F., Duband S., Croisille P., Cavé H., Teyssier G., Adouard V., Touraine R. Expanding the cardiac spectrum of Noonan syndrome with RIT1 variant: Left main coronary artery atresia causing sudden death. Eur. J. Med. Genet. 2017; 60 (6): 299–302. DOI: 10.1016/j.ejmg.2017.03.009
- Aoki Y., Niihori T, Inoue S, Matsubara Y. Recent advances in RASopathies. J. Hum. Genet. 2016; 61 (1): 33–9. DOI: 10.1038/jhg.2015.114
- Savostyanov K.V., Namazova-Baranova L.S., Basargina E.N., Vashakmadze N.D., Zhurkova N.V., Pushkov A.A. et al. The new genome variants in Russian children with genetically determined cardiomyopathies revealed with massive parallel sequencing. Annals of the Russian Academy of Medical Sciences. 2017; 72 (4): 242–53 (in Russ.). DOI: 10.15690/vramn872
- Human Gene Mutation Database (HGMD). Available at: http://www.hgmd.cf.ac.uk
- Ommen S.R., Mital S., Burke M.A., Day S.M., Deswal A., Elliott P. et al. 2020 AHA/ACC Guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2020; 142 (25): e558–e631. DOI: 10.1161/CIR. 0000000000000937
- Elliott P.M., Anastasakis A., Borger M.A., Borggrefe M., Cecchi F., Charron P. et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 2014; 35 (39): 2733–79. DOI: 10.1093/eurheartj/ehu284
- Zhurkova N.V., Gandaeva L.A., Pushkov A.A., Basargina E.N., Pahomov A.V., Trufanov S.K. et al. RASopathies in multidisciplinary pediatric hospita. Medical Genetics. 2020; 19 (8): 21–3 (in Russ.).
- Lin A.E., Basson C.T., Goldmuntz E., Magoulas P.L., McDermott D.A., McDonald-McGinn D.M. et al. Adults with genetic syndromes and cardiovascular abnormalities: clinical history and management. Genet. Med. 2008; 10 (7): 469–94. DOI: 10.1097/gim.0b013e3181772111
- Cornwall J.W., Green R.S., Nielsen J.C., Gelb B.D. Frequency of aortic dilation in Noonan syndrome. Am. J. Cardiol. 2014; 113 (2): 368–71. DOI: 10.1016/j.amjcard.2013.09.034
- Management of Noonan Syndrome. A Clinical Guideline. Noonan Syndrome Guideline Development Group. Https://rasopathiesnet.org/wp-content/uploads/2014/01/265_Noonan_Guidelines.pdf
- Shaw A.C., Kalidas K., Crosby A.H., Jeffery S., Patton M.A. The natural history of Noonan syndrome: a long-term follow-up study. Arch. Dis. Child. 2007; 92 (2): 128–32. DOI: 10.1136/adc.2006.104547
- Thompson D., Patrick-Esteve J., Surcouf J.W., Rivera D., Castellanos B., Desai P. et al. RAF1 variants causing biventricular hypertrophic cardiomyopathy in two preterm infants: further phenotypic delineation and review of literature. Clin. Dysmorphol. 2017; 26 (4): 195–9. DOI: 10.1097/MCD. 0000000000000194
- Kouz K., Lissewski C., Spranger S., Mitter D., Riess A., LopezGonzalez V. et al. Genotype and phenotype in patients with Noonan syndrome and a RIT1 mutation. Genet. Med. 2016; 18 (12): 1226–34. DOI: 10.1038/gim.2016.32
About the authors
- Leila A. Gandaeva, Cand. Med. Sci., Senior Researcher, Pediatric Cardiologist; ORCID
- Valentina G. Kaverina, Junior Researcher, Pediatrician; ORCID
- Elena N. Basargina, Dr. Med. Sci., Professor, Chief Researcher, Head of Department; ORCID
- Aleksandr A. Pushkov, Cand. Med. Sci., Leading Researcher; ORCID
- Kirill V. Savostyanov, Dr. Biol. Sci., Head of the Medical Genetic Center and Laboratory of Medical Genomics; ORCID